Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Information  /  Vol: 15 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

Deep Reinforcement Learning for Autonomous Driving in Amazon Web Services DeepRacer

Bohdan Petryshyn    
Serhii Postupaiev    
Soufiane Ben Bari and Armantas Ostreika    

Resumen

The development of autonomous driving models through reinforcement learning has gained significant traction. However, developing obstacle avoidance systems remains a challenge. Specifically, optimising path completion times while navigating obstacles is an underexplored research area. Amazon Web Services (AWS) DeepRacer emerges as a powerful infrastructure for engineering and analysing autonomous models, providing a robust foundation for addressing these complexities. This research investigates the feasibility of training end-to-end self-driving models focused on obstacle avoidance using reinforcement learning on the AWS DeepRacer autonomous race car platform. A comprehensive literature review of autonomous driving methodologies and machine learning model architectures is conducted, with a particular focus on object avoidance, followed by hands-on experimentation and the analysis of training data. Furthermore, the impact of sensor choice, reward function, action spaces, and training time on the autonomous obstacle avoidance task are compared. The results of the best configuration experiment demonstrate a significant improvement in obstacle avoidance performance compared to the baseline configuration, with a 95.8% decrease in collision rate, while taking about 79% less time to complete the trial circuit.

 Artículos similares

       
 
Zheng Li, Xinkai Chen, Jiaqing Fu, Ning Xie and Tingting Zhao    
With the development of electronic game technology, the content of electronic games presents a larger number of units, richer unit attributes, more complex game mechanisms, and more diverse team strategies. Multi-agent deep reinforcement learning shines ... ver más
Revista: Algorithms

 
Bowen Xing, Xiao Wang and Zhenchong Liu    
The path planning strategy of deep-sea mining vehicles is an important factor affecting the efficiency of deep-sea mining missions. However, the current traditional path planning algorithms suffer from hose entanglement problems and small coverage in the... ver más

 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures

 
Juyao Wei, Zhenggang Lu, Zheng Yin and Zhipeng Jing    
This paper presents a novel data-driven multiagent reinforcement learning (MARL) controller for enhancing the running stability of independently rotating wheels (IRW) and reducing wheel?rail wear. We base our active guidance controller on the multiagent ... ver más
Revista: Applied Sciences

 
Jiacun Wang, Guipeng Xi, Xiwang Guo, Shujin Qin and Henry Han    
The scheduling of disassembly lines is of great importance to achieve optimized productivity. In this paper, we address the Hybrid Disassembly Line Balancing Problem that combines linear disassembly lines and U-shaped disassembly lines, considering multi... ver más
Revista: Information