Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Information  /  Vol: 15 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Benchmarking Automated Machine Learning (AutoML) Frameworks for Object Detection

Samuel de Oliveira    
Oguzhan Topsakal and Onur Toker    

Resumen

Automated Machine Learning (AutoML) is a subdomain of machine learning that seeks to expand the usability of traditional machine learning methods to non-expert users by automating various tasks which normally require manual configuration. Prior benchmarking studies on AutoML systems?whose aim is to compare and evaluate their capabilities?have mostly focused on tabular or structured data. In this study, we evaluate AutoML systems on the task of object detection by curating three commonly used object detection datasets (Open Images V7, Microsoft COCO 2017, and Pascal VOC2012) in order to benchmark three different AutoML frameworks?namely, Google?s Vertex AI, NVIDIA?s TAO, and AutoGluon. We reduced the datasets to only include images with a single object instance in order to understand the effect of class imbalance, as well as dataset and object size. We used the metrics of the average precision (AP) and mean average precision (mAP). Solely in terms of accuracy, our results indicate AutoGluon as the best-performing framework, with a mAP of 0.8901, 0.8972, and 0.8644 for the Pascal VOC2012, COCO 2017, and Open Images V7 datasets, respectively. NVIDIA TAO achieved a mAP of 0.8254, 0.8165, and 0.7754 for those same datasets, while Google?s VertexAI scored 0.855, 0.793, and 0.761. We found the dataset size had an inverse relationship to mAP across all the frameworks, and there was no relationship between class size or imbalance and accuracy. Furthermore, we discuss each framework?s relative benefits and drawbacks from the standpoint of ease of use. This study also points out the issues found as we examined the labels of a subset of each dataset. Labeling errors in the datasets appear to have a substantial negative effect on accuracy that is not resolved by larger datasets. Overall, this study provides a platform for future development and research on this nascent field of machine learning.

 Artículos similares

       
 
Ivan S. Maksymov    
Ambiguous optical illusions have been a paradigmatic object of fascination, research and inspiration in arts, psychology and video games. However, accurate computational models of perception of ambiguous figures have been elusive. In this paper, we desig... ver más
Revista: Algorithms

 
Matija Milanic and Rok Hren    
The Adding-Doubling (AD) algorithm is a general analytical solution of the radiative transfer equation (RTE). AD offers a favorable balance between accuracy and computational efficiency, surpassing other RTE solutions, such as Monte Carlo (MC) simulation... ver más
Revista: Algorithms

 
Andrea Settimi, Naravich Chutisilp, Florian Aymanns, Julien Gamerro and Yves Weinand    
We present TimberTool (TTool v2.1.1), a software designed for woodworking tasks assisted by augmented reality (AR), emphasizing its essential function of the real-time localization of a tool head?s poses within camera frames. The localization process, a ... ver más
Revista: Applied Sciences

 
Kui Zeng, Shutan Xu, Daode Shu and Ming Chen    
Medaka (Oryzias latipes), as a crucial model organism in biomedical research, holds significant importance in fields such as cardiovascular diseases. Currently, the analysis of the medaka ventricle relies primarily on visual observation under a microscop... ver más
Revista: Applied Sciences

 
Hanchi Liu, Xin Ma, Yining Yu, Liang Wang and Lin Hao    
Automated monitoring and analysis of fish?s growth status and behaviors can help scientific aquaculture management and reduce severe losses due to diseases or overfeeding. With developments in machine vision and deep learning (DL) techniques, DL-based ob... ver más