Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Information  /  Vol: 11 Par: 6 (2020)  /  Artículo
ARTÍCULO
TITULO

Reliability Dynamic Analysis by Fault Trees and Binary Decision Diagrams

Fausto Pedro García Márquez    
Isaac Segovia Ramírez    
Behnam Mohammadi-Ivatloo and Alberto Pliego Marugán    

Resumen

New wind turbines are becoming more complex and reliability analysis of them rising in complexity. The systems are composed of many components. Fault tree is used as an useful tool to analyze these interrelations and provide a scheme of the wind turbine, to get a quick overview of the behavior of the system under certain conditions of the components. However, it is complicated and in some cases not possible, to identify the conditions that would generate a wind turbine failure. A quantitative and qualitative reliability analysis of the wind turbine is proposed in this study. Binary decision diagrams are employed as a suitable and operational method to facilitate this analysis and to get an analytical expression by the Boolean functions. The size of the binary decision diagram, i.e., the computational cost for solving the problem, has an important dependence on the order of the components or events considered. Different heuristic ranking methods are used to find an optimal order or one closed, and to validate the results: AND, level, top-down-left-right, deep-first search and breadth-first-search. Birnbaum and criticality importance measures are proposed to evaluate the relevance of each component. This analysis leads to classify the events according to their importance with respect to the probability of the top event. This analysis provides the basis for making medium and long-term maintenance strategies.

 Artículos similares

       
 
Péter Bauer and Mihály Nagy    
Research and industrial application can require custom high-level controllers for industrial drones. Thus, this paper presents the high-fidelity dynamic and control model identification of the DJI M600 Pro hexacopter. This is a widely used multicopter in... ver más
Revista: Aerospace

 
Zhenyu Yin, Feiqing Zhang, Guangyuan Xu, Guangjie Han and Yuanguo Bi    
Confronting the challenge of identifying unknown fault types in rolling bearing fault diagnosis, this study introduces a multi-scale bearing fault diagnosis method based on transfer learning. Initially, a multi-scale feature extraction network, MBDCNet, ... ver más
Revista: Applied Sciences

 
Jun Dai, Chunfeng Zhang, Songlin Liu, Xiangyang Hao, Zongbin Ren and Yunzhu Lv    
Autonomous navigation and localization are the foundations of unmanned intelligent systems, therefore, continuous, stable, and reliable position services in unknown environments are especially important for autonomous navigation and localization. Aiming ... ver más
Revista: Applied Sciences

 
Weijie Huang, Yuanmin Yang, Rui Pang and Mingyuan Jing    
Studying the impact of mainshock?aftershock sequences on dam reliability is crucial for effective disaster prevention measures. With this purpose in mind, a new method for stochastic dynamic response analyses and reliability assessments of dams during se... ver más
Revista: Water

 
Oleg Gaidai, Jingxiang Xu, Vladimir Yakimov and Fang Wang    
Wind turbines and their associated parts are subjected to cyclical loads, such as bending, torque, longitudinal stresses, and twisting moments. The novel spatiotemporal reliability technique described in this research is especially useful for high-dimens... ver más