Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Information  /  Vol: 10 Par: 11 (2019)  /  Artículo
ARTÍCULO
TITULO

Fuzzy Reinforcement Learning and Curriculum Transfer Learning for Micromanagement in Multi-Robot Confrontation

Chunyang Hu and Meng Xu    

Resumen

Multi-Robot Confrontation on physics-based simulators is a complex and time-consuming task, but simulators are required to evaluate the performance of the advanced algorithms. Recently, a few advanced algorithms have been able to produce considerably complex levels in the context of the robot confrontation system when the agents are facing multiple opponents. Meanwhile, the current confrontation decision-making system suffers from difficulties in optimization and generalization. In this paper, a fuzzy reinforcement learning (RL) and the curriculum transfer learning are applied to the micromanagement for robot confrontation system. Firstly, an improved Q-learning in the semi-Markov decision-making process is designed to train the agent and an efficient RL model is defined to avoid the curse of dimensionality. Secondly, a multi-agent RL algorithm with parameter sharing is proposed to train the agents. We use a neural network with adaptive momentum acceleration as a function approximator to estimate the state-action function. Then, a method of fuzzy logic is used to regulate the learning rate of RL. Thirdly, a curriculum transfer learning method is used to extend the RL model to more difficult scenarios, which ensures the generalization of the decision-making system. The experimental results show that the proposed method is effective.

 Artículos similares

       
 
Aldo Uriarte-Portillo, Ramón Zatarain-Cabada, María Lucía Barrón-Estrada, María Blanca Ibáñez and Lucía-Margarita González-Barrón    
This work describes a learning tool named ARGeoITS that combines augmented reality with an intelligent tutoring system to support geometry learning. The work depicts a study developed in Mexico to measure the impact on the learning and motivation of stud... ver más
Revista: Information

 
Shuang Guo, Yarong Du and Liang Liu    
In order to achieve reliability, security, and scalability, the request flow in the Internet of Things (IoT) needs to pass through the service function chain (SFC), which is composed of series-ordered virtual network functions (VNFs), then reach the dest... ver más
Revista: Applied Sciences

 
Yiming Tang, Rui Chen and Bowen Xia    
Nowadays, most fuzzy clustering algorithms are sensitive to the initialization results of clustering algorithms and have a weak ability to handle high-dimensional data. To solve these problems, we developed the viewpoint-driven subspace fuzzy c-means (VS... ver más
Revista: Applied Sciences

 
Konstantinos Charmanas, Nikolaos Mittas and Lefteris Angelis    
Security vulnerabilities constitute one of the most important weaknesses of hardware and software security that can cause severe damage to systems, applications, and users. As a result, software vendors should prioritize the most dangerous and impactful ... ver más
Revista: Information

 
Jing Zhao, Hui Hou, Peng-Sheng Zheng, Da-Han Wang and Yong-Kuan Yang    
Multi-cell cooperative control can be competent for the current increasingly complex biomedical experiments, greatly improving the efficiency of cell manipulation experiments. At present, this kind of multi-cell cooperative control algorithm is becoming ... ver más
Revista: Applied Sciences