Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Information  /  Vol: 12 Par: 4 (2021)  /  Artículo
ARTÍCULO
TITULO

Adaptive Machine Learning for Robust Diagnostics and Control of Time-Varying Particle Accelerator Components and Beams

Alexander Scheinker    

Resumen

Machine learning (ML) is growing in popularity for various particle accelerator applications including anomaly detection such as faulty beam position monitor or RF fault identification, for non-invasive diagnostics, and for creating surrogate models. ML methods such as neural networks (NN) are useful because they can learn input-output relationships in large complex systems based on large data sets. Once they are trained, methods such as NNs give instant predictions of complex phenomenon, which makes their use as surrogate models especially appealing for speeding up large parameter space searches which otherwise require computationally expensive simulations. However, quickly time varying systems are challenging for ML-based approaches because the actual system dynamics quickly drifts away from the description provided by any fixed data set, degrading the predictive power of any ML method, and limits their applicability for real time feedback control of quickly time-varying accelerator components and beams. In contrast to ML methods, adaptive model-independent feedback algorithms are by design robust to un-modeled changes and disturbances in dynamic systems, but are usually local in nature and susceptible to local extrema. In this work, we propose that the combination of adaptive feedback and machine learning, adaptive machine learning (AML), is a way to combine the global feature learning power of ML methods such as deep neural networks with the robustness of model-independent control. We present an overview of several ML and adaptive control methods, their strengths and limitations, and an overview of AML approaches.

 Artículos similares

       
 
Sheng Liu, Jian Song, Lanyong Zhang and Yinchao Tan    
The three-degree-of-freedom (3-DOF) stabilized control system for ship propulsion-assisted sails is used to control the 3-DOF motion of sails to obtain offshore wind energy. The attitude of the sail is adjusted to ensure optimal thrust along the target c... ver más

 
Jili Kong and Zhen Wang    
With the gradual emergence of customized manufacturing, intelligent manufacturing systems have experienced widespread adoption, leading to a surge in research interests in the associated problem of intelligent scheduling. In this paper, we study the flex... ver más
Revista: Applied Sciences

 
Haoyu Lin, Pengkun Quan, Zhuo Liang, Dongbo Wei and Shichun Di    
In the context of automatic charging for electric vehicles, collision localization for the end-effector of robots not only serves as a crucial visual complement but also provides essential foundations for subsequent response design. In this scenario, dat... ver más
Revista: Applied Sciences

 
Qasem Abu Al-Haija and Ahmed Al-Tamimi    
Automatic dependent surveillance-broadcast (ADS-B) is the future of aviation surveillance and traffic control, allowing different aircraft types to exchange information periodically. Despite this protocol?s advantages, it is vulnerable to flooding, denia... ver más

 
Jin Wang, Peng Zhao, Zhe Zhang, Ting Yue, Hailiang Liu and Lixin Wang    
The upset state is an unexpected flight state, which is characterized by an unintentional deviation from normal operating parameters. It is difficult for the pilot to recover the aircraft from the upset state accurately and quickly. In this paper, an ups... ver más
Revista: Aerospace