Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

The Pattern Recognition in Cattle Brand using Bag of Visual Words and Support Vector Machines Multi-Class

Carlos Silva    
Mr    
Daniel Welfer    
Dr    
Cláudia Dornelles    
Mrs    

Resumen

The recognition images of cattle brand in an automatic way is a necessity to governmental organs responsible for this activity. To help this process, this work presents a method that consists in using Bag of Visual Words for extracting of characteristics from images of cattle brand and Support Vector Machines Multi-Class for classification. This method consists of six stages: a) select database of images; b) extract points of interest (SURF); c) create vocabulary (K-means); d) create vector of image characteristics (visual words); e) train and sort images (SVM); f) evaluate the classification results. The accuracy of the method was tested on database of municipal city hall, where it achieved satisfactory results, reporting 86.02% of accuracy and 56.705 seconds of processing time, respectively.

 Artículos similares

       
 
Huabin Chai, Mingtao Xu, Pengju Guan, Yahui Ding, Hui Xu and Yuqiao Zhao    
This paper mainly applies to the parameter inversion problem in mining subsidence under the condition of lack of empirical values.
Revista: Applied Sciences

 
Yi Zhuang and Chenyi Guo    
The collection of information about buildings and their colors is an important aspect of urban planning. The intelligent recognition of buildings using image information plays a significant role in the development of smart cities and urban planning. This... ver más
Revista: Applied Sciences

 
Gabriella Monteiro, Leonardo Camelo, Gustavo Aquino, Rubens de A. Fernandes, Raimundo Gomes, André Printes, Israel Torné, Heitor Silva, Jozias Oliveira and Carlos Figueiredo    
Recent advancements in Artificial Intelligence (AI), deep learning (DL), and computer vision have revolutionized various industrial processes through image classification and object detection. State-of-the-art Optical Character Recognition (OCR) and obje... ver más
Revista: Applied Sciences

 
André B. Peres, Mário C. Espada, Fernando J. Santos, Ricardo A. M. Robalo, Amândio A. P. Dias, Jesús Muñoz-Jiménez, Andrei Sancassani, Danilo A. Massini and Dalton M. Pessôa Filho    
This paper presents a comparison of mathematical and cinematic motion analysis regarding the accuracy of the detection of alterations in the patterns of positional sequence during biceps-curl lifting exercise. Two different methods, one with and one with... ver más
Revista: Applied Sciences

 
Mikhail Zotov, Dmitry Anzhiganov, Aleksandr Kryazhenkov, Dario Barghini, Matteo Battisti, Alexander Belov, Mario Bertaina, Marta Bianciotto, Francesca Bisconti, Carl Blaksley, Sylvie Blin, Giorgio Cambiè, Francesca Capel, Marco Casolino, Toshikazu Ebisuzaki, Johannes Eser, Francesco Fenu, Massimo Alberto Franceschi, Alessio Golzio, Philippe Gorodetzky, Fumiyoshi Kajino, Hiroshi Kasuga, Pavel Klimov, Massimiliano Manfrin, Laura Marcelli, Hiroko Miyamoto, Alexey Murashov, Tommaso Napolitano, Hiroshi Ohmori, Angela Olinto, Etienne Parizot, Piergiorgio Picozza, Lech Wiktor Piotrowski, Zbigniew Plebaniak, Guillaume Prévôt, Enzo Reali, Marco Ricci, Giulia Romoli, Naoto Sakaki, Kenji Shinozaki, Christophe De La Taille, Yoshiyuki Takizawa, Michal Vrábel and Lawrence WienckeaddShow full author listremoveHide full author list    
Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple phenomena that manifest themselves not only in the visible ra... ver más
Revista: Algorithms