Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Information  /  Vol: 14 Par: 10 (2023)  /  Artículo
ARTÍCULO
TITULO

Neural Network Applications in Polygraph Scoring?A Scoping Review

Dana Rad    
Nicolae Paraschiv and Csaba Kiss    

Resumen

Polygraph tests have been used for many years as a means of detecting deception, but their accuracy has been the subject of much debate. In recent years, researchers have explored the use of neural networks in polygraph scoring to improve the accuracy of deception detection. The purpose of this scoping review is to offer a comprehensive overview of the existing research on the subject of neural network applications in scoring polygraph tests. A total of 57 relevant papers were identified and analyzed for this review. The papers were examined for their research focus, methodology, results, and conclusions. The scoping review found that neural networks have shown promise in improving the accuracy of polygraph tests, with some studies reporting significant improvements over traditional methods. However, further research is needed to validate these findings and to determine the most effective ways of integrating neural networks into polygraph testing. The scoping review concludes with a discussion of the current state of the field and suggestions for future research directions.

 Artículos similares

       
 
Huihui Zhu, Hexiang Lin, Shaojun Wu, Wei Luo, Hui Zhang, Yuancheng Zhan, Xiaoting Wang, Aiqun Liu and Leong Chuan Kwek    
Integrated photonic chips leverage the recent developments in integrated circuit technology, along with the control and manipulation of light signals, to realize the integration of multiple optical components onto a single chip. By exploiting the power o... ver más
Revista: Information

 
Omar Abdulkhaleq Aldabash and Mehmet Fatih Akay    
An IDS (Intrusion Detection System) is essential for network security experts, as it allows one to identify and respond to abnormal traffic present in a network. An IDS can be utilized for evaluating the various types of malicious attacks. Hence, detecti... ver más
Revista: Applied Sciences

 
Lei Yang, Mengxue Xu and Yunan He    
Convolutional Neural Networks (CNNs) have become essential in deep learning applications, especially in computer vision, yet their complex internal mechanisms pose significant challenges to interpretability, crucial for ethical applications. Addressing t... ver más
Revista: Applied Sciences

 
Xiaojiao Gu, Yang Tian, Chi Li, Yonghe Wei and Dashuai Li    
The fault diagnosis method proposed in this paper can be applied to the diagnosis of bearings in machine tool spindle systems.
Revista: Applied Sciences

 
Qiyan Li, Zhi Weng, Zhiqiang Zheng and Lixin Wang    
The decrease in lake area has garnered significant attention within the global ecological community, prompting extensive research in remote sensing and computer vision to accurately segment lake areas from satellite images. However, existing image segmen... ver más
Revista: Applied Sciences