Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Information  /  Vol: 10 Par: 12 (2019)  /  Artículo
ARTÍCULO
TITULO

Credit Scoring Using Machine Learning by Combing Social Network Information: Evidence from Peer-to-Peer Lending

Beibei Niu    
Jinzheng Ren and Xiaotao Li    

Resumen

Financial institutions use credit scoring to evaluate potential loan default risks. However, insufficient credit information limits the peer-to-peer (P2P) lending platform?s capacity to build effective credit scoring. In recent years, many types of data are used for credit scoring to compensate for the lack of credit history data. Whether social network information can be used to strengthen financial institutions? predictive power has received much attention in the industry and academia. The aim of this study is to test the reliability of social network information in predicting loan default. We extract borrowers? social network information from mobile phones and then use logistic regression to test the relationship between social network information and loan default. Three machine learning algorithms?random forest, AdaBoost, and LightGBM?were constructed to demonstrate the predictive performance of social network information. The logistic regression results show that there is a statistically significant correlation between social network information and loan default. The machine learning algorithm results show that social network information can improve loan default prediction performance significantly. The experiment results suggest that social network information is valuable for credit scoring.

 Artículos similares

       
 
Ekaterina V. Orlova    
Credit operations are fundamental in the banks? activities and provide a significant share of their income. Under an increased demand for credit resources, credit risks are growth. It keeps the importance of the problem of an increase in the efficiency o... ver más
Revista: Information

 
Ioannis E. Livieris, Niki Kiriakidou, Andreas Kanavos, Vassilis Tampakas and Panagiotis Pintelas    
Credit scoring is generally recognized as one of the most significant operational research techniques used in banking and finance, aiming to identify whether a credit consumer belongs to either a legitimate or a suspicious customer group. With the vigoro... ver más
Revista: Informatics

 
Sergio Edwin Torrico Salamanca    
El Credit Scoring es una metodología utilizada en finanzas, para cuantificar el riesgo de crédito de individuos/empresas, este artículo propone la aplicación de esta técnica como una herramienta para medir el riesgo de crédito agregado de los bancos, y d... ver más

 
Jozef Zurada    
The paper explores the effect of removing/replacing missing values on the classification performance of several models. The original data set, which contains a relatively large number of missing values, comes from the credit scoring context. This data se... ver más

 
Minerva Arzola, Agustín Mejias    
?Vivimos en una sociedad de servicios?. ¿Quien puede imaginar el mundo de hoy sin las telecomunicaciones, el comercio y el transporte, por ejemplo? Las dos últimas décadas han consolidado a la industria de servicios como la responsable del crecimiento ec... ver más