Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Instruments  /  Vol: 6 Par: 3 (2022)  /  Artículo
ARTÍCULO
TITULO

R&D of a Novel High Granularity Crystal Electromagnetic Calorimeter

Baohua Qi and Yong Liu    

Resumen

Future electron-positron collider experiments aim at the precise measurement of the Higgs boson, electroweak physics and the top quark. Based on the particle-flow paradigm, a novel highly granular crystal electromagnetic calorimeter (ECAL) is proposed to address major challenges from jet reconstruction and to achieve the optimal EM energy resolution of around 2?3%/E(GeV)" role="presentation" style="position: relative;">%/??(GeV)-------v%/E(GeV) % / E ( GeV ) with the homogeneous structure. Extensive R&D efforts have been carried out to evaluate the requirements and potentials of the crystal calorimeter concept from sensitive detection units to a full sub-detector system. The requirements on crystal candidates, photon sensors as well as readout electronics are parameterized and quantified in Geant4 full simulation. Experiments including characterizations of crystals and silicon photomultipliers (SiPMs) are performed to validate and improve the simulation results. The physics performance of the crystal ECAL is been studied with the particle flow algorithm ?ArborPFA? which is also being optimized. Furthermore, a small-scale detector module with a crystal matrix and SiPM arrays is under development for future beam tests to study the performance for EM showers.

Palabras claves

 Artículos similares

       
 
Sarfaraz Natha, Umme Laila, Ibrahim Ahmed Gashim, Khalid Mahboob, Muhammad Noman Saeed and Khaled Mohammed Noaman    
Brain tumors (BT) represent a severe and potentially life-threatening cancer. Failing to promptly diagnose these tumors can significantly shorten a person?s life. Therefore, early and accurate detection of brain tumors is essential, allowing for appropri... ver más
Revista: Applied Sciences

 
Yunfeng Wu, Qingkuo Li, Hang Yuan, Ziliang Li, Shiji Zhou, Ge Han and Xingen Lu    
High-pressure ratio centrifugal compressors? diffusers face challenges from high-velocity, non-uniform flow at the impeller outlet, decreasing efficiency and stall margin. To address this, this paper presents a novel vaned diffuser passage design method ... ver más
Revista: Aerospace

 
Daniele Granata, Alberto Savino and Alex Zanotti    
The present study aimed to investigate the capability of mid-fidelity aerodynamic solvers in performing a preliminary evaluation of the static and dynamic stability derivatives of aircraft configurations in their design phase. In this work, the mid-fidel... ver más
Revista: Aerospace

 
Yingke Liao, Guiping Zhu, Guang Wang, Jie Wang and Yanchao Ding    
Magnetohydrodynamic (MHD) is one of the most promising novel propulsion technologies with the advantages of no pollution, high specific impulse, and high acceleration efficiency. As the carrier of this technology, the MHD accelerator has enormous potenti... ver más
Revista: Aerospace

 
Feng Xu, Sanmei Zhao, Bin Li, Haihua Li, Zhongqian Ling, Guangxue Zhang and Maosheng Liu    
Desulfurization wastewater is industrial wastewater with a high salt content, high metal ions, and high hardness produced by flue gas desulfurization of the limestone-gypsum method in coal-fired power plants. This paper summarizes the source of desulfuri... ver más
Revista: Water