Resumen
Several studies reported the significant effect of indoor air quality on human health, safety, productivity, and comfort because most humans usually conduct 80%?90% of their activity inside the building. This is generally due to the fact that indoor pollution is associated with volatile organic compounds (VOCs), pollutants with chronic health effects, both non-carcinogenic and carcinogenic, on humans. Therefore, this study focused on developing wireless VOCs sensor nodes with a low-power strategy feature to perform an autonomous operation in indoor air quality monitoring (IAQM). The sensor node mainboard consists of a microcontroller-based AVR (ATmega-4808) that supports a low power mode and low-power IAQ-Core sensor for VOCs detection. The low-power sensing algorithm developed also allowed the sensor node to consume a total power of 0.22 mAh for one cycle of operation, which includes the initial process, TVOCs value reading process, data transmitting process, and low power mode process at a time interval of 30 min. The most significant power was observed to be consumed in the data transmitting process with 0.13 mAh or 58% of total power consumption in one cycle of sensor node operation. Furthermore, the 10F capacitance of the supercapacitor was able to drive the VOCs sensor node for 139 s and it was recommended that further studies use micro energy harvesting (from an indoor environment) to extend its lifetime. The 1541-minute field experiment conducted also showed that TVOCs and CO2 values were successfully measured and displayed over an internet connection on the monitoring terminal dashboard. The recorded real-time TVOCs value of 175 ppb (<200 ppb) indicates good air quality.