Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Information  /  Vol: 15 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Optimization of Traditional Stock Market Strategies Using the LSTM Hybrid Approach

Ive Botunac    
Jurica Bosna and Maja Matetic    

Resumen

Investment decision-makers increasingly rely on modern digital technologies to enhance their strategies in today?s rapidly changing and complex market environment. This paper examines the impact of incorporating Long Short-term Memory (LSTM) models into traditional trading strategies. The core investigation revolves around whether strategies enhanced with LSTM technology perform better than traditional methods alone. Traditional trading strategies typically depend on analyzing current closing prices and various technical indicators to take trading action. However, by applying LSTM models, this study aims to forecast closing prices with greater accuracy, thereby improving trading performance. Our findings indicate that trading strategies that utilize LSTM models outperform traditional strategies. This improvement suggests a significant advantage in using LSTM models for market prediction and trading decision making. Acknowledging that no one-size-fits-all strategy works for every market condition or stock is crucial. As such, traders are encouraged to select and tailor their strategies based on thorough testing and analysis to best suit their needs and market conditions. This study contributes to a better understanding of how integrating LSTM models can enhance traditional trading strategies, offering a path toward more effective decision making in the unpredictable stock market.

 Artículos similares

       
 
Shitu Chen, Ling Feng, Xuteng Bao, Zhe Jiang, Bowen Xing and Jingxiang Xu    
Path planning is crucial for unmanned surface vehicles (USVs) to navigate and avoid obstacles efficiently. This study evaluates and contrasts various USV path-planning algorithms, focusing on their effectiveness in dynamic obstacle avoidance, resistance ... ver más

 
Lin Zhang, Yanbin Gao and Lianwu Guan    
For seabed mapping, the prevalence of autonomous underwater vehicles (AUVs) employing side-scan sonar (SSS) necessitates robust navigation solutions. However, the positioning errors of traditional strapdown inertial navigation system (SINS) and Doppler v... ver más

 
Yumei Zhang, Jie Zhang, Ye Li, Dan Yao, Yue Zhao, Yi Ai, Weijun Pan and Jiang Li    
Acoustic metamaterials (AMs) composed of periodic artificial structures have extraordinary sound wave manipulation capabilities compared with traditional acoustic materials, and they have attracted widespread research attention. The sound insulation perf... ver más
Revista: Acoustics

 
Gleice Kelly Barbosa Souza, Samara Oliveira Silva Santos, André Luiz Carvalho Ottoni, Marcos Santos Oliveira, Daniela Carine Ramires Oliveira and Erivelton Geraldo Nepomuceno    
Reinforcement learning is an important technique in various fields, particularly in automated machine learning for reinforcement learning (AutoRL). The integration of transfer learning (TL) with AutoRL in combinatorial optimization is an area that requir... ver más
Revista: Algorithms

 
Mattia Neroni, Massimo Bertolini and Angel A. Juan    
In automated storage and retrieval systems (AS/RSs), the utilization of intelligent algorithms can reduce the makespan required to complete a series of input/output operations. This paper introduces a simulation optimization algorithm designed to minimiz... ver más
Revista: Algorithms