Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 11 (2019)  /  Artículo
ARTÍCULO
TITULO

Data Augmentation for Speaker Identification under Stress Conditions to Combat Gender-Based Violence

Esther Rituerto-González    
Alba Mínguez-Sánchez    
Ascensión Gallardo-Antolín and Carmen Peláez-Moreno    

Resumen

A Speaker Identification system for a personalized wearable device to combat gender-based violence is presented in this paper. Speaker recognition systems exhibit a decrease in performance when the user is under emotional or stress conditions, thus the objective of this paper is to measure the effects of stress in speech to ultimately try to mitigate their consequences on a speaker identification task, by using data augmentation techniques specifically tailored for this purpose given the lack of data resources for this condition. An extensive experimentation has been carried out for assessing the effectiveness of the proposed techniques. First, we conclude that the best performance is always obtained when naturally stressed samples are included in the training set, and second, when these are not available, their substitution and augmentation with synthetically generated stress-like samples improves the performance of the system.

 Artículos similares

       
 
Fabi Prezja, Leevi Annala, Sampsa Kiiskinen and Timo Ojala    
Diagnosing knee joint osteoarthritis (KOA), a major cause of disability worldwide, is challenging due to subtle radiographic indicators and the varied progression of the disease. Using deep learning for KOA diagnosis requires broad, comprehensive dataset... ver más
Revista: Algorithms

 
Mohammad Alhumaid and Ayman G. Fayoumi    
Paranasal sinus pathologies, particularly those affecting the maxillary sinuses, pose significant challenges in diagnosis and treatment due to the complex anatomical structures and diverse disease manifestations. The aim of this study is to investigate t... ver más
Revista: Applied Sciences

 
Woonghee Lee, Mingeon Ju, Yura Sim, Young Kul Jung, Tae Hyung Kim and Younghoon Kim    
Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable performance. Yet, even with these advances, these models are found to be vulner... ver más
Revista: Applied Sciences

 
Lei Li, Xiaobao Zeng, Xinpeng Pan, Ling Peng, Yuyang Tan and Jianxin Liu    
Microseismic monitoring plays an essential role for reservoir characterization and earthquake disaster monitoring and early warning. The accuracy of the subsurface velocity model directly affects the precision of event localization and subsequent process... ver más
Revista: Applied Sciences

 
Daniel Rusche, Nils Englert, Marlen Runz, Svetlana Hetjens, Cord Langner, Timo Gaiser and Cleo-Aron Weis    
Background: In this study focusing on colorectal carcinoma (CRC), we address the imperative task of predicting post-surgery treatment needs by identifying crucial tumor features within whole slide images of solid tumors, analogous to locating a needle in... ver más
Revista: Applied Sciences