Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

An Intelligent Adequate-Fitting Prediction Method of Coastal Tunnel Rock Deformation Based on the Effective Rank of Hidden Layer

Jin Liao    
Chang Xia    
Yongtao Wu    
Zhen Liu and Cuiying Zhou    

Resumen

The intelligent prediction of surrounding rock deformation is of great significance for guiding the design and construction of tunnel projects in coastal areas. The deformation of tunnels in coastal areas is more complex than that of the ground, and the risk of encountering adverse geological conditions is greater. The traditional tunnel deformation prediction method contains the defects of a fixed model, a limited sample number, and it is easy to fall into underfitting and local overfitting. Therefore, the capacity of previous methods is limited by significant error, weak generalization, and poor intelligence. This paper proposes an adequate fitting prediction method for tunnel deformation based on the effective rank theory of the hidden layer nodes? output matrix to analyze the surrounding rock and predict its deformation intelligently. Based on the traditional BPNN (back propagation neural network) algorithm, the number of hidden layer nodes is determined by the effective rank of the output matrix. Then, the approximation error and degree were adopted to reflect the approximation law of the BPNN to achieve the purpose of overfitting and underfitting control. An optimized BP neural network model for intelligently predicting tunnel deformation is constructed. Then, the optimized BPNN model is applied to a case study of a coastal tunnel in South China. Compared with the prediction method of LR (linear regression) and TS (time series), the results show that the prediction results of the optimized model are in good agreement with the measured values, with strong generalization ability and high intelligence. The proposed method is of guidance to other tunnels surrounding rock deformation prediction and engineering practice.

 Artículos similares

       
 
Chen Chen, Hong Zhou, Zhengda Lv and Ziqiu Li    
Plated grillage with combined openings was susceptible to complex failure behaviors as the main load-bearing structure of the superstructure on passenger ships subjected to deck loads. Additionally, the deformation and stresses generated during the weldi... ver más

 
Hao Chai, Xi?an Li, Biao Qin, Weiping Wang and Mani Axel    
The volumetric change in unsaturated loess during loading causes serious damage to the foundation and structure, accompanied by changes in hydraulic conditions. Therefore, quantifying the change in the load effect of loess under hydraulic coupling is of ... ver más
Revista: Water

 
Jesus Alejandro Serrato-Pedrosa, Guillermo Urriolagoitia-Sosa, Beatriz Romero-Ángeles, Guillermo Manuel Urriolagoitia-Calderón, Salvador Cruz-López, Alejandro Urriolagoitia-Luna, David Esaú Carbajal-López, Jonathan Rodolfo Guereca-Ibarra and Guadalupe Murillo-Aleman    
Plantar pressure distribution is a thoroughly recognized parameter for evaluating foot structure and biomechanical behavior, as it is utilized to determine musculoskeletal conditions and diagnose foot abnormalities. Experimental testing is currently bein... ver más
Revista: Applied Sciences

 
Xiaokai Li, Xiaolong Zhang, Faming Zhang, Jian Huang, Shixiong Tang and Zhiqing Liu    
The mountainous areas of Southwest China have the characteristics of valley deep-cutting, a large topographic gradient, complex geological structures, etc. With the development of infrastructure construction in the area, the construction of bridges acros... ver más
Revista: Water

 
Hepeng Liu, Denghua Li and Yong Ding    
The construction of a reasonable and reliable deformation prediction model is of great practical significance for dam safety assessment and risk decision-making. Traditional dam deformation prediction models are susceptible to interference from redundant... ver más
Revista: Applied Sciences