Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 24 (2022)  /  Artículo
ARTÍCULO
TITULO

Malware Classification Using Convolutional Fuzzy Neural Networks Based on Feature Fusion and the Taguchi Method

Cheng-Jian Lin    
Min-Su Huang and Chin-Ling Lee    

Resumen

The applications of computer networks are increasingly extensive, and networks can be remotely controlled and monitored. Cyber hackers can exploit vulnerabilities and steal crucial data or conduct remote surveillance through malicious programs. The frequency of malware attacks is increasing, and malicious programs are constantly being updated. Therefore, more effective malware detection techniques are being developed. In this paper, a convolutional fuzzy neural network (CFNN) based on feature fusion and the Taguchi method is proposed for malware image classification; this network is referred to as FT-CFNN. Four fusion methods are proposed for the FT-CFNN, namely global max pooling fusion, global average pooling fusion, channel global max pooling fusion, and channel global average pooling fusion. Data are fed into this network architecture and then passed through two convolutional layers and two max pooling layers. The feature fusion layer is used to reduce the feature size and integrate the network information. Finally, a fuzzy neural network is used for classification. In addition, the Taguchi method is used to determine optimal parameter combinations to improve classification accuracy. This study used the Malimg dataset to evaluate the accuracy of the proposed classification method. The accuracy values exhibited by the proposed FT-CFNN, proposed CFNN, and original LeNet model in malware family classification were 98.61%, 98.13%, and 96.68%, respectively.

 Artículos similares

       
 
Nikola Andelic, Sandi Baressi ?egota and Zlatan Car    
Malware detection using hybrid features, combining binary and hexadecimal analysis with DLL calls, is crucial for leveraging the strengths of both static and dynamic analysis methods. Artificial intelligence (AI) enhances this process by enabling automat... ver más
Revista: Computers

 
Abigail Copiaco, Leena El Neel, Tasnim Nazzal, Husameldin Mukhtar and Walid Obaid    
This study introduces an innovative all-in-one malware identification model that significantly enhances convenience and resource efficiency in classifying malware across diverse file types. Traditional malware identification methods involve the extractio... ver más
Revista: Applied Sciences

 
Ibrahim Ba?abbad and Omar Batarfi    
Several malware variants have attacked systems and data over time. Ransomware is among the most harmful malware since it causes huge losses. In order to get a ransom, ransomware is software that locks the victim?s machine or encrypts his personal informa... ver más
Revista: Computers

 
Sapna Sadhwani, Baranidharan Manibalan, Raja Muthalagu and Pranav Pawar    
The study in this paper characterizes lightweight IoT networks as being established by devices with few computer resources, such as reduced battery life, processing power, memory, and, more critically, minimal security and protection, which are easily vu... ver más
Revista: Applied Sciences

 
Norah Abanmi, Heba Kurdi and Mai Alzamel    
The prevalence of malware attacks that target IoT systems has raised an alarm and highlighted the need for efficient mechanisms to detect and defeat them. However, detecting malware is challenging, especially malware with new or unknown behaviors. The ma... ver más
Revista: Applied Sciences