Resumen
In this paper, we investigate the fundamental linkage between underwater electric potential (UEP) signatures and their related electric fields above the waterline, which are introduced as above water electric potential (AEP) signatures. As a first step, the field distribution for an underwater point source excitation (fundamental solution) is derived analytically, using an adjusted method of images. Subsequently a numerical approach is introduced, whereby the calculation of the stationary current density distribution and electrostatic fields are coupled within an FEM simulation. Simulation results are presented for the aforementioned point source, as well as for a submarine model, where the latter includes considering non-linear polarization curves to model the electrochemical behavior at the metal?seawater interface. Finally, the relevance of AEP signatures in the context of anti-submarine warfare (ASW) is discussed. Our results show that AEP signatures inevitably occur along with UEP signatures, and could therefore in principal be used to detect submerged submarines via airborne sensors. However, an estimation of the expectable signal-to-noise-ratio (SNR) suggests that AEP signatures are difficult to exploit and therefore entail a much lower risk compared to other signatures.