Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Algorithms  /  Vol: 16 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

NSGA-PINN: A Multi-Objective Optimization Method for Physics-Informed Neural Network Training

Binghang Lu    
Christian Moya and Guang Lin    

Resumen

This paper presents NSGA-PINN, a multi-objective optimization framework for the effective training of physics-informed neural networks (PINNs). The proposed framework uses the non-dominated sorting genetic algorithm (NSGA-II) to enable traditional stochastic gradient optimization algorithms (e.g., ADAM) to escape local minima effectively. Additionally, the NSGA-II algorithm enables satisfying the initial and boundary conditions encoded into the loss function during physics-informed training precisely. We demonstrate the effectiveness of our framework by applying NSGA-PINN to several ordinary and partial differential equation problems. In particular, we show that the proposed framework can handle challenging inverse problems with noisy data.

 Artículos similares

       
 
Vedat Dogan and Steven Prestwich    
In a multi-objective optimization problem, a decision maker has more than one objective to optimize. In a bilevel optimization problem, there are the following two decision-makers in a hierarchy: a leader who makes the first decision and a follower who r... ver más
Revista: Algorithms

 
Claudia Cavallaro, Carolina Crespi, Vincenzo Cutello, Mario Pavone and Francesco Zito    
This paper introduces an agent-based model grounded in the ACO algorithm to investigate the impact of partitioning ant colonies on algorithmic performance. The exploration focuses on understanding the roles of group size and number within a multi-objecti... ver más
Revista: Algorithms

 
Meng Ma, Zhirong Zhong, Zhi Zhai and Ruobin Sun    
There are hundreds of various sensors used for online Prognosis and Health Management (PHM) of LREs. Inspired by the fact that a limited number of key sensors are selected for inflight control purposes in LRE, it is practical to optimal placement of redu... ver más
Revista: Aerospace

 
Yan Xu, Yilong Yang, He Huang, Gang Chen, Guangxing Li and Huajian Chen    
To improve the cushioning performance of soft-landing systems, a novel origami-inspired combined cushion airbag is proposed. The geometry size, initial pressure, and exhaust vent area of the cushion airbags are designed preliminarily using a theoretical ... ver más
Revista: Aerospace

 
Yaxin Dong, Hongxiang Ren, Yuzhu Zhu, Rui Tao, Yating Duan and Nianjun Shao    
To effectively address the increase in maritime accidents and the challenges posed by the trend toward larger ships for maritime safety, it is crucial to rationally allocate the limited maritime search and rescue (MSAR) resources and enhance accident res... ver más