Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 10 (2019)  /  Artículo
ARTÍCULO
TITULO

Multi-Objective Defocus Robust Source and Mask Optimization Using Sensitive Penalty

Pengzhi Wei    
Yanqiu Li    
Tie Li    
Naiyuan Sheng    
Enze Li and Yiyu Sun    

Resumen

The continuous decrease in the size of lithographic technology nodes has led to the development of source and mask optimization (SMO) and also to the control of defocus becoming stringent in the actual lithography process. Due to multi-factor impact, defocusing is always changeable and uncertain in the real exposure process. But conventional SMO assumes the lithography system is ideal, which only compensates the optical proximity effect (OPE) in the best focus plane. Therefore, to solve the inverse lithography problem with more uniformity of pattern in different defocus variations, we proposed a defocus robust SMO (DRSMO) approach that is driven by a defocus sensitivity penalty function for the first time. This multi-objective optimization samples a wide range of defocus disturbances and it can be proceeded by the mini-batch gradient descent (MBGD) algorithm effectively. The simulation results showed that a more robust defocus source and mask can be designed through DRSMO optimization. The defocus sensitivity factor sß maximally decreased 63.5% compared to conventional SMO, and due to the low error sensitivity and the depth of defocus (DOF), the process window (PW) was further enlarged effectively. Compared to conventional SMO, the exposure latitude (EL) maximally increased from 4.5% to 10.5% and DOF maximally increased 54.5% (EL = 5%), which proved the validity of the DRSMO method in improving the focusing performance.