Resumen
Extreme heat poses significant risks to the world?s growing urban population, and the heat stress to human health is likely to escalate with the anthropogenically increased temperatures projected by climate models. Thus, the additional heat from the urban heat island (UHI) effect needs to be quantified, including the spatial pattern. This study focuses on the city of Valencia (Spain), investigating the intensity and spatial pattern of UHI during three consecutive hot summer days accompanying a heat record. For the analysis, long-term in situ measurements and remote sensing data were combined. The UHI effect was evaluated using two approaches: (a) based on air temperature (AT) time-series from two meteorological stations and (b) using land surface temperature (LST) images from MODIS products by NASA with 1 km resolution. The strongest nighttime UHI estimated from AT was 2.3 °C, while the most intense surface UHI calculated as the difference between the LST of urban and rural regions (defined by NDVI) was 2.6 °C?both measured during the night after the record hot day. To assess the human thermal comfort in the city the Discomfort Index was applied. With the increasing number of tropical nights, the mitigation of nighttime UHI is a pressing issue that should be taken into consideration in climate-resilient urban planning.