Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Water  /  Vol: 6 Par: 4 (2014)  /  Artículo
ARTÍCULO
TITULO

Application of Set Pair Analysis-Based Similarity Forecast Model and Wavelet Denoising for Runoff Forecasting

Chien-Ming Chou    

Resumen

This study presents the application of a set pair analysis-based similarity forecast (SPA-SF) model and wavelet denoising to forecast annual runoff. The SPA-SF model was built from identical, discrepant and contrary viewpoints. The similarity between estimated and historical data can be obtained. The weighted average of the annual runoff values characterized by the highest connection coefficients was regarded as the predicted value of the estimated annual runoff. In addition, runoff time series were decomposed using wavelet transforms to acquire approximate and detailed runoff signals at various resolution levels. At each resolution level, threshold quantifications were performed by setting the values of a detailed signal below a fixed threshold to zero. The denoised runoff time series data were obtained from the approximation at the final resolution level and processed detailed signals using threshold quantification at all resolution levels of runoff by wavelet reconstruction. Instead of using the original annual runoff, the denoised annual runoff was applied to compute the similarity between estimated and historical data for model calibration. The original data were used for model calibration and validation; the denoised runoff data were used as input data to calibrate the model (obtaining different connection coefficients) that is then applied for validation purposes by using as benchmark the same original data. To verify the accuracy of the proposed method, the annual runoff data of six stations in Eastern Taiwan were analyzed. Based on a root mean square error (RMSE) criterion, the analytical results demonstrated that, for all six stations, the proposed method using denoised annual runoff outperformed the traditional SPA-SF model, using original annual runoff, because noise was effectively removed from the detailed data, using a constant threshold, thus enhancing the accuracy of the annual runoff forecasting for the SPA-SF model.

 Artículos similares

       
 
Roberto Scigliano, Valeria De Simone, Roberta Fusaro, Davide Ferretto and Nicole Viola    
The design of integrated and highly efficient solutions for thermal management is a key capability for different aerospace products, ranging from civil aircraft using hydrogen on board to miniaturized satellites. In particular, this paper discloses a nov... ver más
Revista: Aerospace

 
Florent Grotto, Oscar Peta, Christophe Bouvet, Bruno Castanié and Joël Serra    
Airworthiness certification requires proof of structure strength, which is performed generally through a building block approach. To achieve this, representative intermediate-scale experiments generated by test benches are, in general, needed, in additio... ver más
Revista: Aerospace

 
Mirko Dinulovic, Aleksandar Benign and Bo?ko Ra?uo    
In the present work, the potential application of machine learning techniques in the flutter prediction of composite materials missile fins is investigated. The flutter velocity data set required for different fin aerodynamic geometries and materials is ... ver más
Revista: Aerospace

 
Zahra Ameli, Shabnam Jafarpoor Nesheli and Eric N. Landis    
The application of deep learning (DL) algorithms has become of great interest in recent years due to their superior performance in structural damage identification, including the detection of corrosion. There has been growing interest in the application ... ver más
Revista: Infrastructures

 
Rituraj Shukla, Ramesh Rudra, Prasad Daggupati, Colin Little, Alamgir Khan, Pradeep Goel and Shiv Prasher    
The effectiveness of existing and potential best management practices (BMPs) to cropped lands in the Jeannette Creek watershed (Thames River basin, Ontario, Canada) in reducing P loads at its pumped outlets was assessed using the Soil and Water Assessmen... ver más
Revista: Hydrology