Resumen
Microseismic monitoring plays an essential role for reservoir characterization and earthquake disaster monitoring and early warning. The accuracy of the subsurface velocity model directly affects the precision of event localization and subsequent processing. It is challenging for traditional methods to realize efficient and accurate microseismic velocity inversion due to the low signal-to-noise ratio of field data. Deep learning can efficiently invert the velocity model by constructing a mapping relationship from the waveform data domain to the velocity model domain. The predicted and reference values are fitted with mean square error as the loss function. To reduce the feature mismatch between the synthetic and real microseismic data, data augmentation is also performed using correlation and convolution operations. Moreover, a hybrid training strategy is proposed by combining synthetic and augmented data. By testing real microseismic data, the results show that the Unet is capable of high-resolution and robust velocity prediction. The data augmentation method complements more high-frequency components, while the hybrid training strategy fully combines the low-frequency and high-frequency components in the data to improve the inversion accuracy.