Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Water  /  Vol: 15 Par: 8 (2023)  /  Artículo
ARTÍCULO
TITULO

Experiments and Simulations to Describe Alkalinity Release from Particle-Containing Oil-in-Water Emulsions and Particle Suspensions

Katherine A. Muller and C. Andrew Ramsburg    

Resumen

Among the most common amendments added to groundwater during site remediation are compounds used to adjust or maintain the pH. This research describes an approach to encapsulate mineral particles (MgO and CaCO3) within oil droplets suspended within an aqueous phase for the purpose of delivery to the subsurface environment. A series of batch experiments was combined with mathematical modeling to illustrate the encapsulation and understand the influence of particle encapsulation on rates and extents of alkalinity release. The encapsulation of the alkalinity-releasing particles results in slower rates of amendment release as compared to rates obtained using suspensions of bare mineral particles, allowing for the possibility of control as a function of the pH. The results indicate that the alkalinity release from particle suspensions followed a mineral dissolution mechanism that could not explain the rate of the alkalinity release of the encapsulated particles. The reduction in mineral dissolution rates observed with the encapsulated particles was found to result from a mass transfer limitation. This limitation was well described using a linear driving force expression to account for the resistance to mass transfer at the oil?water interface.

 Artículos similares

       
 
Yixiao Li, Fang Zhang and Jinhui Jiang    
Dynamic load localization and identification technology is very important in the structural design and optimization of aircraft. This paper proposes a non-global traversal method (NTM) for the fast positioning and recognition of dynamic loads on continuo... ver más
Revista: Aerospace

 
Andrey A. Kistanov    
Defects are an integral part of the structure of various two-dimensional materials (2D), including 2D transition-metal dichalcogenides. These defects usually govern their electronic properties. In this work, simulations based on the density functional th... ver más
Revista: Applied Sciences

 
Arjun Poudel, Seungwon Kim, Byoung Hooi Cho and Janghwan Kim    
Composite bridges are typically exposed to temperature variations due to heat radiation, conduction, and convection. Temperature affects the modal parameters of bridges, hindering the application of damage detection methods based on the dynamic propertie... ver más
Revista: Applied Sciences

 
Chang Yan, Wen-Jie Fan, Da-Miao Wang and Wen-Zhang Zhang    
Mechanical interfaces are prevalent in industries like aerospace and maritime, where the normal contact stiffness on these surfaces is a crucial component of the overall stiffness of mechanical structures. From the perspective of structural mechanics, no... ver más
Revista: Applied Sciences

 
Tianlei Fu, Lianwu Guan, Yanbin Gao and Chao Qin    
This paper investigates an anticipatory activation anti-windup approach based on Linear Active Disturbance Rejection Control (LADRC) to address the influences of accelerated saturation on the actuators in a Miniaturized Inertial Stabilized Platform (MISP... ver más