Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Algorithms  /  Vol: 17 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Evaluation of Neural Network Effectiveness on Sliding Mode Control of Delta Robot for Trajectory Tracking

Anni Zhao    
Arash Toudeshki    
Reza Ehsani    
Joshua H. Viers and Jian-Qiao Sun    

Resumen

The Delta robot is an over-actuated parallel robot with highly nonlinear kinematics and dynamics. Designing the control for a Delta robot to carry out various operations is a challenging task. Various advanced control algorithms, such as adaptive control, sliding mode control, and model predictive control, have been investigated for trajectory tracking of the Delta robot. However, these control algorithms require a reliable input?output model of the Delta robot. To address this issue, we have created a control-affine neural network model of the Delta robot with stepper motors. This is a completely data-driven model intended for control design consideration and is not derivable from Newton?s law or Lagrange?s equation. The neural networks are trained with randomly sampled data in a sufficiently large workspace. The sliding mode control for trajectory tracking is then designed with the help of the neural network model. Extensive numerical results are obtained to show that the neural network model together with the sliding mode control exhibits outstanding performance, achieving a trajectory tracking error below 5 cm on average for the Delta robot. Future work will include experimental validation of the proposed neural network input?output model for control design for the Delta robot. Furthermore, transfer learnings can be conducted to further refine the neural network input?output model and the sliding mode control when new experimental data become available.

 Artículos similares

       
 
Jingxiong Lei, Xuzhi Liu, Haolang Yang, Zeyu Zeng and Jun Feng    
High-resolution remote sensing images (HRRSI) have important theoretical and practical value in urban planning. However, current segmentation methods often struggle with issues like blurred edges and loss of detailed information due to the intricate back... ver más
Revista: Applied Sciences

 
Max Schrötter, Andreas Niemann and Bettina Schnor    
Over the last few years, a plethora of papers presenting machine-learning-based approaches for intrusion detection have been published. However, the majority of those papers do not compare their results with a proper baseline of a signature-based intrusi... ver más
Revista: Information

 
Haiyang Yao, Tian Gao, Yong Wang, Haiyan Wang and Xiao Chen    
To overcome the challenges of inadequate representation and ineffective information exchange stemming from feature homogenization in underwater acoustic target recognition, we introduce a hybrid network named Mobile_ViT, which synergizes MobileNet and Tr... ver más

 
Futo Ueda, Hiroto Tanouchi, Nobuyuki Egusa and Takuya Yoshihiro    
River water-level prediction is crucial for mitigating flood damage caused by torrential rainfall. In this paper, we attempt to predict river water levels using a deep learning model based on radar rainfall data instead of data from upstream hydrological... ver más
Revista: Water

 
Anibal Pedraza, Lucia Gonzalez, Oscar Deniz and Gloria Bueno    
HER2 overexpression is a prognostic and predictive factor observed in about 15% to 20% of breast cancer cases. The assessment of its expression directly affects the selection of treatment and prognosis. The measurement of HER2 status is performed by an e... ver más
Revista: Algorithms