Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Deep Learning and YOLOv8 Utilized in an Accurate Face Mask Detection System

Christine Dewi    
Danny Manongga    
Hendry    
Evangs Mailoa and Kristoko Dwi Hartomo    

Resumen

Face mask detection is a technological application that employs computer vision methodologies to ascertain the presence or absence of a face mask on an individual depicted in an image or video. This technology gained significant attention and adoption during the COVID-19 pandemic, as wearing face masks became an important measure to prevent the spread of the virus. Face mask detection helps to enforce mask-wearing guidelines, which can significantly reduce the spread of respiratory illnesses, including COVID-19. Wearing masks in densely populated areas provides individuals with protection and hinders the spread of airborne particles that transmit viruses. The application of deep learning models in object recognition has shown significant progress, leading to promising outcomes in the identification and localization of objects within images. The primary aim of this study is to annotate and classify face mask entities depicted in authentic images. To mitigate the spread of COVID-19 within public settings, individuals can employ the use of face masks created from materials specifically designed for medical purposes. This study utilizes YOLOv8, a state-of-the-art object detection algorithm, to accurately detect and identify face masks. To analyze this study, we conducted an experiment in which we combined the Face Mask Dataset (FMD) and the Medical Mask Dataset (MMD) into a single dataset. The detection performance of an earlier research study using the FMD and MMD was improved by the suggested model to a ?Good? level of 99.1%, up from 98.6%. Our study demonstrates that the model scheme we have provided is a reliable method for detecting faces that are obscured by medical masks. Additionally, after the completion of the study, a comparative analysis was conducted to examine the findings in conjunction with those of related research. The proposed detector demonstrated superior performance compared to previous research in terms of both accuracy and precision.

 Artículos similares

       
 
Yongen Lin, Dagang Wang, Tao Jiang and Aiqing Kang    
Reliable streamflow forecasting is a determining factor for water resource planning and flood control. To better understand the strengths and weaknesses of newly proposed methods in streamflow forecasting and facilitate comparisons of different research ... ver más
Revista: Water

 
Ulzhan Bissarinova, Aidana Tleuken, Sofiya Alimukhambetova, Huseyin Atakan Varol and Ferhat Karaca    
This paper introduces a deep learning (DL) tool capable of classifying cities and revealing the features that characterize each city from a visual perspective. The study utilizes city view data captured from satellites and employs a methodology involving... ver más
Revista: Buildings

 
Hanan M. Alghamdi    
Sentiment analysis plays a crucial role in understanding public opinion and social media trends. It involves analyzing the emotional tone and polarity of a given text. When applied to Arabic text, this task becomes particularly challenging due to the lan... ver más

 
Reenu Mohandas, Mark Southern, Eoin O?Connell and Martin Hayes    
Deep learning based visual cognition has greatly improved the accuracy of defect detection, reducing processing times and increasing product throughput across a variety of manufacturing use cases. There is however a continuing need for rigorous procedure... ver más

 
Boris Stanoev, Goran Mitrov, Andrea Kulakov, Georgina Mirceva, Petre Lameski and Eftim Zdravevski    
With the exponential growth of data, extracting actionable insights becomes resource-intensive. In many organizations, normalized relational databases store a significant portion of this data, where tables are interconnected through some relations. This ... ver más