Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Experimental Study of Supercavitation Bubble Development over Bodies in a Duct Flow

Lotan Arad Ludar and Alon Gany    

Resumen

Understanding the development and geometry of a supercavitation bubble is essential for the design of supercavitational vehicles as well as for prediction of bubble formation within machinery-related duct flows. The role of the cavitator (nose) of a body within the flow is significant as well. This research studied experimentally supercavitation bubble development and characteristics within a duct flow. Tests were conducted on cylindrical slender bodies (3 mm diameter) within a duct (about 20 mm diameter) at different water flow velocities. A comparison of supercavitation bubbles, developing on bodies with different nose geometries, was made. The comparison referred to the conditions of the bubbles? creation and collapse, as well as to their shape and development. Various stages of the bubble development were examined for different cavitators (flat, spherical, and conical nose). It was found that the different cavitators produced similar bubble geometries, although at different flow velocities. The bubble appeared at the lowest velocity for the flat nose, then for the spherical nose, and at the highest velocity for the conical cavitator. In addition, a hysteresis phenomenon was observed, showing different bubble development paths for increasing versus decreasing the water flow velocity.