Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Geosciences  /  Vol: 10 Par: 11 (2020)  /  Artículo
ARTÍCULO
TITULO

Seismogenic-Triggering Mechanism of Gas Emission Activizations on the Arctic Shelf and Associated Phases of Abrupt Warming

Leopold Lobkovsky    

Resumen

A seismogenic trigger mechanism is proposed to explain the abrupt climate warming phases in the Arctic as a result of strong mechanical disturbances in the marginal region of the Arctic lithosphere. Those disturbances might have been caused by great earthquakes in the Aleutian subduction zone, and slowly propagated across the Arctic shelf and adjacent regions, triggering the methane release from permafrost and metastable gas hydrates, followed by greenhouse gas emissions into the atmosphere. The proposed mechanism is based on the identified correlation between the series of the great earthquakes in the Aleutian island arc, which occurred in the early and middle of the 20th century, and the two phases of sharp climate warming, which began in 1920 and 1980. There is a 20-year time lag between these events, which is explained by the time of arrival of deformation waves in the lithosphere (propagating with a velocity of about 100 km per year) at the Arctic shelf and adjacent land from the Aleutian subduction zone, the region of their generation. The trigger mechanism causing the methane release from permafrost and metastable gas hydrates is related to the destruction of micro-sized ice films covering gas hydrate particles, the elements highly important for hydrate self-preservation, as well as destruction of gas-saturated micropores in permafrost rocks due to the slight additional stresses associated with deformation waves, and thus emergence of conditions favorable for gas filtration and its subsequent emission.

 Artículos similares

       
 
Evgeny Chuvilin, Valentina Ekimova, Dinara Davletshina, Natalia Sokolova and Boris Bukhanov    
The active emission of gas (mainly methane) from terrestrial and subsea permafrost in the Russian Arctic has been confirmed by ample evidence. In this paper, a generalization and some systematization of gas manifestations recorded in the Russian Arctic i... ver más
Revista: Geosciences

 
Anatoly Gavrilov, Valentina Malakhova, Elena Pizhankova and Alexandra Popova    
By using thermal mathematical modeling for the time range of 200,000 years ago, the authors have been studying the role the glaciation, covered the De Long Islands and partly the Anjou Islands at the end of Middle Neopleistocene, played in the formation ... ver más
Revista: Geosciences

 
Denis Chernykh, Vladimir Yusupov, Aleksandr Salomatin, Denis Kosmach, Natalia Shakhova, Elena Gershelis, Anton Konstantinov, Andrey Grinko, Evgeny Chuvilin, Oleg Dudarev, Andrey Koshurnikov and Igor Semiletov    
Seeps found offshore in the East Siberian Arctic Shelf may mark zones of degrading subsea permafrost and related destabilization of gas hydrates. Sonar surveys provide an effective tool for mapping seabed methane fluxes and monitoring subsea Arctic perma... ver más
Revista: Geosciences

 
Evgeny Chuvilin, Valentina Ekimova, Boris Bukhanov, Sergey Grebenkin, Natalia Shakhova and Igor Semiletov    
Destabilization of intrapermafrost gas hydrate is one possible reason for methane emission on the Arctic shelf. The formation of these intrapermafrost gas hydrates could occur almost simultaneously with the permafrost sediments due to the occurrence of a... ver más
Revista: Geosciences

 
Evgeny Chuvilin, Dinara Davletshina, Valentina Ekimova, Boris Bukhanov, Natalia Shakhova and Igor Semiletov    
Destabilization of intrapermafrost gas hydrates is one of the possible mechanisms responsible for methane emission in the Arctic shelf. Intrapermafrost gas hydrates may be coeval to permafrost: they originated during regression and subsequent cooling and... ver más
Revista: Geosciences