Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 23 (2020)  /  Artículo
ARTÍCULO
TITULO

Using the LSTM Network to Forecast the Demand for Electricity in Poland

Anna Manowska    

Resumen

The impact of environmental regulations introduced by the European Union is of key importance for electricity generation systems. The Polish fuel structure of electricity production is based on solid fuels. Moreover, the generating base is outdated and must gradually be withdrawn from the power system. In this context, Poland?s energy policy is undergoing a transformation as climate and environmental regulations are becoming increasingly stringent for the energy sector based on solid fuels (hard coal and lignite). However, the transformation process must be adapted to market demands, because the overriding goal is to ensure energy security by maintaining the continuity of energy supplies and an acceptable electricity price. This directly contributes to the development of the entire economy and the standard of living of the society, in accordance with the European Agreement establishing an association between the Republic of Poland and the European Communities and their Member States, signed on 16 December 1991, and the European Energy Charter, signed on 17 December 1991. Ensuring energy security is the most important goal of the energy policy. Therefore, energy companies must forecast the demand. The main goal of this article is to develop a mathematical model of electricity consumption by 2040 by all sectors of the economy: industry, transport, residential, commercial and public services, agriculture, forestry, and fishing. In order to achieve the intended goal, a model was developed by using Long Short-Term Memory (LSTM) artificial neural networks, which belong to deep learning techniques and reflect long-term relationships in time series for a small set of statistical data. The results show that the proposed model can significantly improve the accuracy of forecasts (1?3% of mean absolute percentage error (MAPE) for the analyzed sectors of the economy).

 Artículos similares

       
 
Guanwen Zhang and Dongnian Jiang    
Rolling bearings are one of the most important and indispensable components of a mechanical system, and an accurate prediction of their remaining life is essential to ensuring the reliable operation of a mechanical system. In order to effectively utilize... ver más
Revista: Applied Sciences

 
Ive Botunac, Jurica Bosna and Maja Matetic    
Investment decision-makers increasingly rely on modern digital technologies to enhance their strategies in today?s rapidly changing and complex market environment. This paper examines the impact of incorporating Long Short-term Memory (LSTM) models into ... ver más
Revista: Information

 
Shifeng Chen, Jialin Wang and Ketai He    
The popularization of the internet and the widespread use of smartphones have led to a rapid growth in the number of social media users. While information technology has brought convenience to people, it has also given rise to cyberbullying, which has a ... ver más
Revista: Information

 
Yin Tang, Lizhuo Zhang, Dan Huang, Sha Yang and Yingchun Kuang    
In view of the current problems of complex models and insufficient data processing in ultra-short-term prediction of photovoltaic power generation, this paper proposes a photovoltaic power ultra-short-term prediction model named HPO-KNN-SRU, based on a S... ver más
Revista: Applied Sciences

 
Kevin Mero, Nelson Salgado, Jaime Meza, Janeth Pacheco-Delgado and Sebastián Ventura    
Unemployment, a significant economic and social challenge, triggers repercussions that affect individual workers and companies, generating a national economic impact. Forecasting the unemployment rate becomes essential for policymakers, allowing them to ... ver más
Revista: Applied Sciences