Resumen
Single-crystal diamonds are considered as the best tool material for ultra-precision machining. However, due to its low thermal conductivity, small elastic modulus and strong chemical activity, titanium alloy has poor machinability and is a typically difficult-to-machine material. Excessive tool wear prevents diamonds from cutting titanium alloy. This study conducts a series of thermal analytic experiments under conditions of different gas atmospheres in order to research the details of thermochemical wear of diamonds catalyzed by titanium alloy at elevated temperatures. Raman scattering analysis was performed to identify the transformation of the diamond crystal structure. The change in chemical composition of the work material was detected be means of energy dispersive X-ray analysis. X-ray photoelectron spectroscopy was used to confirm the resultant interfacial thermochemical reactions. The results of the study reveal the diffusion law of the single-crystal diamond under the action of titanium in the argon and air environment. From the experimental results, the product of the chemical reaction corresponding to the interface between the diamond and the titanium alloy sheet could be found. The research results provide a theoretical basis for elucidating the wear mechanism of diamond tools in the titanium alloy cutting process and for exploring the measures to suppress tool wear.