Resumen
In this paper, the effect of grain size and micromorphology of Cu foil on the velocity of the flyer of an exploding foil detonator was studied. A Cu foil with different grain sizes and micromorphologies was prepared by the physical vapor deposition sputtering method. The flyer velocity of the Cu foil was measured by the photon Doppler technique (PDT). The influence of the grain size and micromorphology of the Cu foil (which was the core transducer of the exploding foil detonator) on the flyer velocity and reacted morphology was discussed. The results show that the grain size and micromorphology of the Cu film can greatly affect the velocity and morphology of the flyer. The grain size of the Cu film is more uniform, and the stimulus response in the middle area of the bridge foil is more concentrated. In addition, the current density becomes more uniform, resulting in a better explosion performance. Consequently, the speed of the formed flyer becomes higher, leading to a smoother flyer surface, which is more conductive to energy conversion.