Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

Hydrodynamic and Flow Field Characteristics of Water Jet Propulsion under Mooring Conditions

Dagang Zhao    
Yang Zhang    
Qian He    
Cong Sun and Mingqi Bi    

Resumen

The acceleration characteristics of a water jet-propelled ship during startup are related to its performance under mooring conditions. Water jet propulsion cavitation during startup increases the vibration and noise of the whole ship. Therefore, accurately predicting and analyzing the performance, hydrodynamics and flow field characteristics of water jet-propelled ships under mooring conditions can help elucidate the startup characteristics of the ships and optimize their acceleration strategies. In this study, the hydrodynamic and flow field characteristics of water jet propulsion and water jet propulsion ships under mooring conditions were studied using three-dimensional numerical modeling. First, the hydrodynamic performance of the water jet propeller was analyzed, and the relevant flow field law was derived. Then, the hydrodynamic performance, internal and external flow field characteristics, pulsation pressure and flow rate at the nozzle, and pulsation pressure at the monitoring points around the impeller of the water jet propulsion ship model were analyzed under mooring conditions. We obtained the open-water law for the water jet propeller and the hydrodynamic force and flow field law for a two-pump water jet propulsion ship. The ship model developed in this study provides a good theoretical foundation for further research on water jet propulsion.

 Artículos similares

       
 
Gergely Ámon, Katalin Bene, Richard Ray, Zoltán Gribovszki and Péter Kalicz    
More frequent high-intensity, short-duration rainfall events increase the risk of flash floods on steeply sloped watersheds. Where measured data are unavailable, numerical models emerge as valuable tools for predicting flash floods. Recent applications o... ver más
Revista: Water

 
Suiji Wang    
An anastomosing river is a stable multiple-channel system separated by inter-channel wetlands, and there are serious difficulties in observing the hydrodynamics of such river patterns in situ. Therefore, there are few reports on the hydrodynamic data of ... ver más
Revista: Water

 
Chunyun Shen, Jiahao Zhang, Chenglin Ding and Shiming Wang    
By combining computational fluid dynamics (CFD) and surrogate model method (SMM), the relationship between turbine performance and airfoil shape and flow characteristics at low flow rate is revealed. In this paper, the flow velocity tidal energy airfoil ... ver más

 
Dilshan S. P. Amarasinghe Baragamage and Weiming Wu    
A three-dimensional (3D) fully-coupled fluid-structure model has been developed in this study to calculate the impact force of tsunamis on a flexible structure considering fluid-structure interactions. The propagation of a tsunami is simulated by solving... ver más
Revista: Water

 
Bojan Milovanovic, Predrag Vojt, Budo Zindovic, Vladan Kuzmanovic and Ljubodrag Savic    
This paper presents a methodology for estimation of hydrodynamic loads acting on the bottom and at the walls of a stilling basin of a stepped chute with converging walls, based on the pressure measurements at the selected points of a scale model. This is... ver más
Revista: Water