Resumen
Austenitic stainless steels produced by laser powder bed fusion (L-PBF) are quite interesting materials owing to their specific microstructure consisting of dendrite walls built of dislocations pinned by many nano-oxides that involves significant strengthening without loss of ductility. In this work, different plasma treatments were performed to harden the surface of 316 L steel manufactured by L-PBF. The samples were characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), light microscopy (LM) and micro-hardness tests. The experimental results show that all the plasma treatments enhance the hardness of the surface because a C-enriched layer of austenite (S-phase) forms with a thickness up to 25 µm. The plasma gas mixture, consisting of 2.5% (CH4) + 97.5% (H2), resulted in being the most effective and produced a surface hardness (547 ± 27 HV) more than double with respect to that of the untreated material. The treatment temperature was 475 °C, which represents a good compromise between the necessity to avoid the precipitation of M23C6 carbides and the compatibility of treatment time with the industrial practice. Moreover, it has been observed that a 2 µm-thick over-layer of amorphous C forms on the sample surface. The hardness of such over-layer, which depends on the specific treatment and is related to the degree of topological disorder, is generally greater than that of S-phase. The work demonstrates that plasma carburizing is quite effective in hardening the surface of 316 L steel manufactured by L-PBF and further improves its mechanical properties, which are basically superior to those of the same material prepared by conventional processes.