Redirigiendo al acceso original de articulo en 16 segundos...
ARTÍCULO
TITULO

A Review of Modeling Approaches for Understanding and Monitoring the Environmental Effects of Marine Renewable Energy

Kate E. Buenau    
Lysel Garavelli    
Lenaïg G. Hemery and Gabriel García Medina    

Resumen

Understanding the environmental effects of marine energy (ME) devices is fundamental for their sustainable development and efficient regulation. However, measuring effects is difficult given the limited number of operational devices currently deployed. Numerical modeling is a powerful tool for estimating environmental effects and quantifying risks. It is most effective when informed by empirical data and coordinated with the development and implementation of monitoring protocols. We reviewed modeling techniques and information needs for six environmental stressor?receptor interactions related to ME: changes in oceanographic systems, underwater noise, electromagnetic fields (EMFs), changes in habitat, collision risk, and displacement of marine animals. This review considers the effects of tidal, wave, and ocean current energy converters. We summarized the availability and maturity of models for each stressor?receptor interaction and provide examples involving ME devices when available and analogous examples otherwise. Models for oceanographic systems and underwater noise were widely available and sometimes applied to ME, but need validation in real-world settings. Many methods are available for modeling habitat change and displacement of marine animals, but few examples related to ME exist. Models of collision risk and species response to EMFs are still in stages of theory development and need more observational data, particularly about species behavior near devices, to be effective. We conclude by synthesizing model status, commonalities between models, and overlapping monitoring needs that can be exploited to develop a coordinated and efficient set of protocols for predicting and monitoring the environmental effects of ME.

 Artículos similares

       
 
Lorenzo Santoro, Lorenzo Vaiani, Antonio Boccaccio, Luciano Lamberti, Lorenzo Lo Muzio, Andrea Ballini and Stefania Cantore    
In tissue formation and regeneration processes, cells often move collectively, maintaining connections through intercellular adhesions. However, the specific roles of cell?substrate and cell-to-cell mechanical interactions in the regulation of collective... ver más
Revista: Applied Sciences

 
Giampaolo D?Alessandro, Pantea Tavakolian and Stefano Sfarra    
The present review aims to analyze the application of infrared thermal imaging, aided by bio-heat models, as a tool for the diagnosis of skin and breast cancers. The state of the art of the related technical procedures, bio-heat transfer modeling, and th... ver más
Revista: Applied Sciences

 
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León    
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc... ver más
Revista: Algorithms

 
Ariel Dinar    
The field of water management is continually changing. Water has been subject to external shocks in the form of climate change and globalization. Water management analysis is subject to disciplinary developments and inter-disciplinary interactions. Are t... ver más
Revista: Water

 
Jiju Guo, Wengeng Cao, Guohui Lang, Qifa Sun, Tian Nan, Xiangzhi Li, Yu Ren and Zeyan Li    
The presence of high concentrations of geogenic arsenic (As) in groundwater poses a serious threat to the health of millions of individuals globally. This paper examines the research progress of groundwater with high concentrations of geogenic As through... ver más
Revista: Water