Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 22 (2023)  /  Artículo
ARTÍCULO
TITULO

Enhancing the Performance of XR Environments Using Fog and Cloud Computing

Eun-Seok Lee and Byeong-Seok Shin    

Resumen

The extended reality (XR) environment demands high-performance computing and data processing capabilities, while requiring continuous technological development to enable a real-time integration between the physical and virtual worlds for user interactions. XR systems have traditionally been deployed in local environments primarily because of the need for the real-time collection of user behavioral patterns. On the other hand, these XR systems face limitations in local deployments, such as latency issues arising from factors, such as network bandwidth and GPU performance. Consequently, several studies have examined cloud-based XR solutions. While offering centralized management advantages, these solutions present bandwidth, data transmission, and real-time processing challenges. Addressing these challenges necessitates reconfiguring the XR environment and adopting new approaches and strategies focusing on network bandwidth and real-time processing optimization. This paper examines the computational complexities, latency issues, and real-time user interaction challenges of XR. A system architecture that leverages edge and fog computing is proposed to overcome these challenges and enhance the XR experience by efficiently processing input data, rendering output content, and minimizing latency for real-time user interactions.