Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Computation  /  Vol: 9 Par: 2 (2021)  /  Artículo
ARTÍCULO
TITULO

Deep Learning for Fake News Detection in a Pairwise Textual Input Schema

Despoina Mouratidis    
Maria Nefeli Nikiforos and Katia Lida Kermanidis    

Resumen

In the past decade, the rapid spread of large volumes of online information among an increasing number of social network users is observed. It is a phenomenon that has often been exploited by malicious users and entities, which forge, distribute, and reproduce fake news and propaganda. In this paper, we present a novel approach to the automatic detection of fake news on Twitter that involves (a) pairwise text input, (b) a novel deep neural network learning architecture that allows for flexible input fusion at various network layers, and (c) various input modes, like word embeddings and both linguistic and network account features. Furthermore, tweets are innovatively separated into news headers and news text, and an extensive experimental setup performs classification tests using both. Our main results show high overall accuracy performance in fake news detection. The proposed deep learning architecture outperforms the state-of-the-art classifiers, while using fewer features and embeddings from the tweet text.

 Artículos similares

       
 
Jingwen Yang and Ruohua Zhou    
Whisper speaker recognition (WSR) has received extensive attention from researchers in recent years, and it plays an important role in medical, judicial, and other fields. Among them, the establishment of a whisper dataset is very important for the study... ver más
Revista: Information

 
Wandile Nhlapho, Marcellin Atemkeng, Yusuf Brima and Jean-Claude Ndogmo    
The advent of deep learning (DL) has revolutionized medical imaging, offering unprecedented avenues for accurate disease classification and diagnosis. DL models have shown remarkable promise for classifying brain tumors from Magnetic Resonance Imaging (M... ver más
Revista: Information

 
Maryan Rizinski, Andrej Jankov, Vignesh Sankaradas, Eugene Pinsky, Igor Mishkovski and Dimitar Trajanov    
The task of company classification is traditionally performed using established standards, such as the Global Industry Classification Standard (GICS). However, these approaches heavily rely on laborious manual efforts by domain experts, resulting in slow... ver más
Revista: Information

 
Mondher Bouazizi, Chuheng Zheng, Siyuan Yang and Tomoaki Ohtsuki    
A growing focus among scientists has been on researching the techniques of automatic detection of dementia that can be applied to the speech samples of individuals with dementia. Leveraging the rapid advancements in Deep Learning (DL) and Natural Languag... ver más
Revista: Information

 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace