Resumen
Integro-differential equations involving Volterra and Fredholm operators (VFIDEs) are used to model many phenomena in science and engineering. Nonlocal boundary conditions are more effective, and in some cases necessary, because they are more accurate measurements of the true state than classical (local) initial and boundary conditions. Closed-form solutions are always desirable, not only because they are more efficient, but also because they can be valuable benchmarks for validating approximate and numerical procedures. This paper presents a direct operator method for solving, in closed form, a class of Volterra?Fredholm?Hammerstein-type integro-differential equations under nonlocal boundary conditions when the inverse operator of the associated Volterra integro-differential operator exists and can be found explicitly. A technique for constructing inverse operators of convolution-type Volterra integro-differential operators (VIDEs) under multipoint and integral conditions is provided. The proposed methods are suitable for integration into any computer algebra system. Several linear and nonlinear examples are solved to demonstrate the effectiveness of the method.