Resumen
A spread spectrum sound-based local positioning system (SSSLPS) has been developed for indoor agricultural robots by our research group. Such an SSSLPS has several advantages, including effective propagation, low cost, and ease of use. When using sound velocity for field position measurements in a greenhouse, spatial and temporal variations in temperature during the day can have a major effect on sound velocity and subsequent positioning accuracy. In this research, a temperature-compensated sound velocity positioning was proposed and evaluated in comparison to a conventional temperature sensor method. Results indicate that this new proposed method has a positioning accuracy to within 20 mm in a 3 m × 9 m ridged greenhouse. It has the potential to replace the current system of using the temperature sensors in a greenhouse.