Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 19 (2023)  /  Artículo
ARTÍCULO
TITULO

Research on the Identification of a Winter Olympic Multi-Intent Chinese Problem Based on Multi-Model Fusion

Pingshan Liu    
Qi Liang and Zhangjing Cai    

Resumen

Aiming at addressing the inability of traditional web technologies to effectively respond to Winter-Olympics-related user questions containing multiple intentions, this paper explores a multi-model fusion-based multi-intention recognition model BCNBLMATT to solve this problem. The model is proposed to address the characteristics of complex semantics, strong contextual relevance, and a large number of informative features of the Chinese problem text related to the Winter Olympics, as well as the limitations of the traditional word vector model, such as insufficient expression in the textual representation and the relative concern mechanism of feature expression. The BCNBLMATT model first obtains a comprehensive feature vector representation of the problem text through BERT. Then, a multi-scale text convolutional neural network model and a BiLSTM-Multi-heads attention model (a joint model combining a bidirectional long- and short-term attention network with a multi-head attention mechanism) are used to capture local features at more scales and contextually critical information features at more levels. Finally, the two obtained kinds of features are concatenated and fused to obtain richer and more comprehensive information about the problem text features, which improves the model?s performance in the multi-attention recognition task. Comparative experiments on the Winter Olympics Chinese question dataset and the MixATIS question dataset show that the BCNBLMATT model significantly improves the three metrics of macro-averaged precision, macro-averaged recall, and macro-averaged F1 value and exhibits better generalization. This study provides an effective solution to the multi-intent recognition task for Winter Olympic problems, overcomes the limitations of traditional models, and provides new ideas for improving the performance of multi-intent recognition.

 Artículos similares

       
 
Stefan Peev, Ivaylo Parushev and Ralitsa Yotsova    
Undecalcified bone histology is a valuable diagnostic method for studying bone microarchitecture and provides information on bone formation, resorption, and turnover. It has various clinical and research applications. Toluidine blue has been widely adopt... ver más
Revista: Applied Sciences

 
Ye Xiao, Yupeng Hu, Jizhao Liu, Yi Xiao and Qianzhen Liu    
Ship trajectory prediction is essential for ensuring safe route planning and to have advanced warning of the dangers at sea. With the development of deep learning, most of the current research has explored advanced prediction methods based on historical ... ver más

 
Qiankun Wang, Ke Zhu, Peiwen Guo, Jiaji Zhang and Zhihua Xiong    
Faced with the challenges of global climate change, zero-carbon buildings (ZCB) serve as a crucial means to achieve carbon peak and carbon neutrality goals, particularly in the development of tropical island regions. This study aims to establish a ZCB te... ver más
Revista: Applied Sciences

 
Sojeong Roh, Trong Danh Nguyen and Jun Seop Lee    
Radio Frequency Identification (RFID) technology, capable of wirelessly processing large amounts of information, is gaining attention with the advancement of IoT technology. RFID systems can be utilized as Wireless Sensor Network (WSN) technology by intr... ver más
Revista: Applied Sciences

 
Noor Ul Ain Tahir, Zuping Zhang, Muhammad Asim, Junhong Chen and Mohammed ELAffendi    
Enhancing the environmental perception of autonomous vehicles (AVs) in intelligent transportation systems requires computer vision technology to be effective in detecting objects and obstacles, particularly in adverse weather conditions. Adverse weather ... ver más
Revista: Algorithms