Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 5 (2022)  /  Artículo
ARTÍCULO
TITULO

Predicting Children with ADHD Using Behavioral Activity: A Machine Learning Analysis

Md. Maniruzzaman    
Jungpil Shin and Md. Al Mehedi Hasan    

Resumen

Attention deficit hyperactivity disorder (ADHD) is one of childhood?s most frequent neurobehavioral disorders. The purpose of this study is to: (i) extract the most prominent risk factors for children with ADHD; and (ii) propose a machine learning (ML)-based approach to classify children as either having ADHD or healthy. We extracted the data of 45,779 children aged 3?17 years from the 2018?2019 National Survey of Children?s Health (NSCH, 2018?2019). About 5218 (11.4%) of children were ADHD, and the rest of the children were healthy. Since the class label is highly imbalanced, we adopted a combination of oversampling and undersampling approaches to make a balanced class label. We adopted logistic regression (LR) to extract the significant factors for children with ADHD based on p-values (<0.05). Eight ML-based classifiers such as random forest (RF), Naïve Bayes (NB), decision tree (DT), XGBoost, k-nearest neighborhood (KNN), multilayer perceptron (MLP), support vector machine (SVM), and 1-dimensional convolution neural network (1D CNN) were adopted for the prediction of children with ADHD. The average age of the children with ADHD was 12.4 ± 3.4 years. Our findings showed that RF-based classifier provided the highest classification accuracy of 85.5%, sensitivity of 84.4%, specificity of 86.4%, and an AUC of 0.94. This study illustrated that LR with RF-based system could provide excellent accuracy for classifying and predicting children with ADHD. This system will be helpful for early detection and diagnosis of ADHD.

 Artículos similares