Resumen
Noise filtering is a crucial task in digital image processing, performing the function of preprocessing. In this paper, we propose an algorithm that employs deep convolution and soft thresholding iterative algorithms to extract and learn the features of noisy images. The extracted features are acquired through prior and sparse representation theory for image reconstruction. Effective separation of the image and noise is achieved using an end-to-end network of dilated convolution and fully connected layers. Several experiments were performed on public images subject to various levels of Gaussian noise, in order to evaluate the effectiveness of the proposed approach. The results indicated that our algorithm achieved a high peak signal-to-noise ratio (PSNR) and significantly improved the visual effects of the images. Our study supports the effectiveness of our approach and substantiates its potential to be applied to a broad spectrum of image processing tasks.