Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 2 (2022)  /  Artículo
ARTÍCULO
TITULO

On the Detection Capabilities of Signature-Based Intrusion Detection Systems in the Context of Web Attacks

Jesús Díaz-Verdejo    
Javier Muñoz-Calle    
Antonio Estepa Alonso    
Rafael Estepa Alonso and Germán Madinabeitia    

Resumen

Signature-based Intrusion Detection Systems (SIDS) play a crucial role within the arsenal of security components of most organizations. They can find traces of known attacks in the network traffic or host events for which patterns or signatures have been pre-established. SIDS include standard packages of detection rulesets, but only those rules suited to the operational environment should be activated for optimal performance. However, some organizations might skip this tuning process and instead activate default off-the-shelf rulesets without understanding its implications and trade-offs. In this work, we help gain insight into the consequences of using predefined rulesets in the performance of SIDS. We experimentally explore the performance of three SIDS in the context of web attacks. In particular, we gauge the detection rate obtained with predefined subsets of rules for Snort, ModSecurity and Nemesida using seven attack datasets. We also determine the precision and rate of alert generated by each detector in a real-life case using a large trace from a public webserver. Results show that the maximum detection rate achieved by the SIDS under test is insufficient to protect systems effectively and is lower than expected for known attacks. Our results also indicate that the choice of predefined settings activated on each detector strongly influences its detection capability and false alarm rate. Snort and ModSecurity scored either a very poor detection rate (activating the less-sensitive predefined ruleset) or a very poor precision (activating the full ruleset). We also found that using various SIDS for a cooperative decision can improve the precision or the detection rate, but not both. Consequently, it is necessary to reflect upon the role of these open-source SIDS with default configurations as core elements for protection in the context of web attacks. Finally, we provide an efficient method for systematically determining which rules deactivate from a ruleset to significantly reduce the false alarm rate for a target operational environment. We tested our approach using Snort?s ruleset in our real-life trace, increasing the precision from 0.015 to 1 in less than 16 h of work.

 Artículos similares

       
 
Luana Conte, Emanuele Rizzo, Tiziana Grassi, Francesco Bagordo, Elisabetta De Matteis and Giorgio De Nunzio    
Pedigree charts remain essential in oncological genetic counseling for identifying individuals with an increased risk of developing hereditary tumors. However, this valuable data source often remains confined to paper files, going unused. We propose a co... ver más
Revista: Computation

 
Juan Luis Pérez-Ruiz, Yu Tang, Igor Loboda and Luis Angel Miró-Zárate    
In the field of aircraft engine diagnostics, many advanced algorithms have been proposed over the last few years. However, there is still wide room for improvement, especially in the development of more integrated and complete engine health management sy... ver más
Revista: Aerospace

 
Jinghua Groppe, Sven Groppe, Daniel Senf and Ralf Möller    
Given a set of software programs, each being labeled either as vulnerable or benign, deep learning technology can be used to automatically build a software vulnerability detector. A challenge in this context is that there are countless equivalent ways to... ver más
Revista: Information

 
Yuntao Shi, Hongfei Zhang, Wei Guo, Meng Zhou, Shuqin Li, Jie Li and Yu Ding    
This research proposes a face detection algorithm named LighterFace, which is aimed at enhancing detection speed to meet the demands of real-time community applications. Two pre-trained convolutional neural networks are combined, namely Cross Stage Parti... ver más
Revista: Information

 
Yiheng Zhou, Kainan Ma, Qian Sun, Zhaoyuxuan Wang and Ming Liu    
Over the past several decades, deep neural networks have been extensively applied to medical image segmentation tasks, achieving significant success. However, the effectiveness of traditional deep segmentation networks is substantially limited by the sma... ver más
Revista: Information