Resumen
In order to solve the problems of high millet agglomerates rate, high damage rate, and high undelivered net loss rate in the process of mechanized harvesting of millet, a longitudinal axial flow-staggered flexible threshing device for millet was designed on the basis of the existing threshing device. The ?staggered teeth? threshing drum and the micro rotating circular tube concave screen work together to realize the flexible and low damage threshing of millet. The pre experiment was carried out first, and the factors that have a great impact on the millet agglomerates rate, the undelivered net loss rate, and the damage rate were found to be the feeding amount, the rotating speed of the drum, and the threshing clearance. In order to further explore the influence of the interaction between the factors on the millet agglomerates rate, the undelivered net loss rate, and the damage rate, the regression orthogonal rotation combination test was carried out, and after the test, the optimal parameter combination of feeding amount, drum speed, and threshing clearance was determined. The results showed that when the feeding amount was 1.3 kg/s, the rotating speed of the drum was 762 r/min-1 and the concave clearance was 15 mm, the millet agglomerates rate was 2.92%, the high undelivered net loss rate was 1.58%, and the damage rate was 0.37%.