Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 11 (2019)  /  Artículo
ARTÍCULO
TITULO

A YOLOv2 Convolutional Neural Network-Based Human?Machine Interface for the Control of Assistive Robotic Manipulators

Gianluca Giuffrida    
Gabriele Meoni and Luca Fanucci    

Resumen

During the last years, the mobility of people with upper limb disabilities and constrained on power wheelchairs is empowered by robotic arms. Nowadays, even though modern manipulators offer a high number of functionalities, some users cannot exploit all those potentialities due to their reduced manual skills, even if capable of driving the wheelchair by means of proper Human?Machine Interface (HMI). Owing to that, this work proposes a low-cost manipulator realizing only simple tasks and controllable by three different graphical HMI. The latter are empowered using a You Only Look Once (YOLO) v2 Convolutional Neural Network that analyzes the video stream generated by a camera placed on the robotic arm end-effector and recognizes the objects with which the user can interact. Such objects are shown to the user in the HMI surrounded by a bounding box. When the user selects one of the recognized objects, the target position information is exploited by an automatic close-feedback algorithm which leads the manipulator to automatically perform the desired task. A test procedure showed that the accuracy in reaching the desired target is 78%. The produced HMIs were appreciated by different user categories, obtaining a mean score of 8.13/10.

 Artículos similares

       
 
Pavlo Maruschak, Ihor Konovalenko, Yaroslav Osadtsa, Volodymyr Medvid, Oleksandr Shovkun, Denys Baran, Halyna Kozbur and Roman Mykhailyshyn    
Modern neural networks have made great strides in recognising objects in images and are widely used in defect detection. However, the output of a neural network strongly depends on both the training dataset and the conditions under which the image was ac... ver más
Revista: Applied Sciences

 
Binghui Zhao, Liguo Han, Pan Zhang, Qiang Feng and Liyun Ma    
In passive seismic exploration, the number and location of underground sources are very random, and there may be few passive sources or an uneven spatial distribution. The random distribution of seismic sources can cause the virtual shot recordings to pr... ver más
Revista: Applied Sciences

 
Lei Yang, Mengxue Xu and Yunan He    
Convolutional Neural Networks (CNNs) have become essential in deep learning applications, especially in computer vision, yet their complex internal mechanisms pose significant challenges to interpretability, crucial for ethical applications. Addressing t... ver más
Revista: Applied Sciences

 
Guoqing Dong, Weirong Li, Zhenzhen Dong, Cai Wang, Shihao Qian, Tianyang Zhang, Xueling Ma, Lu Zou, Keze Lin and Zhaoxia Liu    
The developed prototype provides a more efficient and accurate solution for classifying dynagraph cards, meeting the requirements of oil field operations and enhancing economic benefits and work efficiency.
Revista: Applied Sciences

 
JongBae Kim    
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro... ver más
Revista: Applied Sciences