Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Water  /  Vol: 10 Par: 10 (2018)  /  Artículo
ARTÍCULO
TITULO

Computationally Efficient Multivariate Calibration and Validation of a Grid-Based Hydrologic Model in Sparsely Gauged West African River Basins

Thomas Poméon    
Bernd Diekkrüger and Rohini Kumar    

Resumen

The prediction of freshwater resources remains a challenging task in West Africa, where the decline of in situ measurements has a detrimental effect on the quality of estimates. In this study, we establish a series of modeling routines for the grid-based mesoscale Hydrologic Model (mHM) using Multiscale Parameter Regionalization (MPR). We provide a computationally efficient application of mHM-MPR across a diverse range of data-scarce basins using in situ observations, remote sensing, and reanalysis inputs. Model performance was first screened for four precipitation datasets and three evapotranspiration calculation methods. Subsequently, we developed a modeling framework in which the pre-screened model is first calibrated using discharge as the observed variable (mHM Q), and next calibrated using a combination of discharge and actual evapotranspiration data (mHM Q/ET). Both model setups were validated in a multi-variable evaluation framework using discharge, actual evapotranspiration, soil moisture and total water storage data. The model performed reasonably well, with mean discharge KGE values of 0.53 (mHM Q) and 0.49 (mHM Q/ET) for the calibration; and 0.23 (mHM Q) and 0.13 (mHM Q/ET) for the validation. Other tested variables were also within a good predictive range. This further confirmed the robustness and well-represented spatial distribution of the hydrologic predictions. Using MPR, the calibrated model can then be scaled to produce outputs at much smaller resolutions. Overall, our analysis highlights the worth of utilizing additional hydrologic variables (together with discharge) for the reliable application of a distributed hydrologic model in sparsely gauged West African river basins.

 Artículos similares

       
 
Zahid Masood, Muhammad Usama, Shahroz Khan, Konstantinos Kostas and Panagiotis D. Kaklis    
Generative models offer design diversity but tend to be computationally expensive, while non-generative models are computationally cost-effective but produce less diverse and often invalid designs. However, the limitations of non-generative models can be... ver más

 
Qing Li, Decheng Zuo, Yi Feng and Dongxin Wen    
Backpack computers require powerful, intelligent computing capabilities for field wearables while taking energy consumption into careful consideration. A recommended solution for this demand is the CPU + NPU-based SoC. In many wearable intelligence appli... ver más
Revista: Applied Sciences

 
P.V. Kumaraguru, Vidyavathi Kamalakkannan, Gururaj H L, Francesco Flammini, Badria Sulaiman Alfurhood and Rajesh Natarajan    
Terabytes of data are now being handled by an increasing number of apps, and rapid user decision-making is hampered by data analysis. At the same time, there is a rise in interest in big data analysis for social networks at the moment. Thus, adopting dis... ver más

 
Oluwakemi Christiana Abikoye, Esau Taiwo Oladipupo, Agbotiname Lucky Imoize, Joseph Bamidele Awotunde, Cheng-Chi Lee and Chun-Ta Li    
The application of the Internet of Medical Things (IoMT) in medical systems has brought much ease in discharging healthcare services by medical practitioners. However, the security and privacy preservation of critical user data remain the reason the tech... ver más
Revista: Future Internet

 
Mohan Kumar Gajendran, Ijaz Fazil Syed Ahmed Kabir, Sudhakar Vadivelu and E. Y. K. Ng    
As wind energy continues to be a crucial part of sustainable power generation, the need for precise and efficient modeling of wind turbines, especially under yawed conditions, becomes increasingly significant. Addressing this, the current study introduce... ver más