Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Heat Transfer Enhancement of Nanofluids with Non-Spherical Nanoparticles: A Review

Xiaoyin Li    
Fangyang Yuan    
Wenma Tian    
Chenlong Dai    
Xinjun Yang    
Dongxiang Wang    
Jiyun Du    
Wei Yu and Huixin Yuan    

Resumen

This article reviews the heat transfer enhancement of nanofluids with non-spherical nanoparticles. We divided the non-spherical nanoparticles suspended in nanofluids into three categories based on the dimension of geometric particle structure. Based on the measured data in experimental studies, we then evaluated the shape effect of non-spherical nanoparticles on thermal conductivity and convective heat transfer enhancement of nanofluids. Recent studies explored the numerical predictions and related heat transfer mechanisms. Due to large aspect ratios, thermal conductivity is abnormally enhanced only for nanofluids with carbon nanotubes/nanofibers/nanowires. The approximate enhancement effect exerted by three types of non-spherical nanoparticles on thermal conductivity was 4.5:2.5:1. Thermal conductivity enhancement per concentration was larger for nanorods/ellipsoids with small aspect ratios. The convective heat transfer coefficient was increased by suspending non-spherical nanoparticles in the base fluid. Consequently, no significant thermohydraulic performance was discovered for convective heat transfer of non-spherical nanoparticle nanofluid flow, specifically for turbulent flows, due to increased pumping power. However, the temperature and particle concentration effect on convective heat transfer remains unclear. In addition, no perfect model for predicting the thermal conductivity and convective heat transfer of non-spherical nanoparticle nanofluids has been reported.

 Artículos similares

       
 
Yuyang Liu and Xian Yi    
The tangential jet-induced swirling flow is a highly efficient technology for enhancing heat transfer. This paper explores the application of swirling flow of an airfoil/aero-engine in a hot air anti-icing chamber, aiming to improve the anti-icing perfor... ver más
Revista: Aerospace

 
Xin Wei, Xiaojuan Shi, Honghu Ji and Jinlong Hu    
In order to study the infrared radiation characteristics of an air-breathing hypersonic vehicle powered by a scramjet, it is necessary to solve the internal and external flow field of the air-breathing hypersonic vehicle. Owing to the complexity and diff... ver más
Revista: Aerospace

 
Wenjie Shen, Suofang Wang and Xiaodi Liang    
Impellers are utilized to increase pressure to ensure that a radial pre-swirl system can provide sufficient cooling airflow to the turbine blades. In the open literature, the pressurization mechanism of the impellers was investigated. However, the effect... ver más
Revista: Aerospace

 
Xiaoyang Li, Xiaohui Lin, Changyue Xu and Zhuopei Li    
The calculation of a cockpit?s transient thermal load is important for determining the capacity of the cockpit environmental control system, ensuring the safety of electronic equipment and increasing the health and comfort of cockpit occupants. According... ver más
Revista: Aerospace

 
Kirttayoth Yeranee, Yu Rao, Chao Xu, Yueliang Zhang and Xiyuan Su    
Additive manufacturing allows the fabrication of relatively complex cooling structures, such as triply periodic minimal surface (TPMS), which offers high heat transfer per unit volume. This study shows the turbulent flow heat transfer and thermal stress ... ver más
Revista: Aerospace