Resumen
A new approach based on the multigene genetic-programming (MGGP) technique is proposed to predict initial dilution of vertical buoyant jets subjected to lateral confinement. The models are trained and tested using experimental data, and the good matches demonstrate the generalization and predictive capabilities of the evolved MGGP-based models. The best Pareto-optimal MGGP-based model is also compared with the model evolved using a single-gene genetic-programming (SGGP) algorithm and an existing regression-based empirical equation. The comparisons reveal the superiority of the MGGP-based model. This study confirms that the MGGP technique is promising in evolving an explicit, accurate, and compact model, and the developed models can be employed to estimate effectively and efficiently the dilution properties of a laterally confined vertical buoyant jet.