Redirigiendo al acceso original de articulo en 16 segundos...
ARTÍCULO
TITULO

Selection Method of Dendritic River Networks Based on Hybrid Coding for Topographic Map Generalization

Chengming Li    
Wei Wu    
Pengda Wu    
Yong Yin and Zhaoxin Dai    

Resumen

As the coding of a dendritic river system can be used to represent the stream order and spatial-structure of a river network, it is always used in river selection, which is a key step in topographic map generalization. There are two categories of conventional hydrological coding systems, one is the top-down approach, and the other is the bottom-up approach. However, the former does not accurately reflect the hierarchies of a dendritic river network, which is produced by catchment relationships, and it is not appropriate for the stream selection of river networks with uniform distributions of tributaries. The latter cannot directly indicate the subtree depth of a stream, and it is not favorable to stream selection of river systems that have topologically deep structures. Therefore, a selection method for dendritic river networks based on hybrid coding is proposed in this paper. First, the dendritic river network is coded through classical top-down Horton coding. Second, directed topology trees are constructed to organize the river network data, and stroke connections are calculated to code the river network in the bottom-up approach. Third, the river network is marked through hybrid usage of the top-down approach and bottom-up approach, and based on the spatial characteristics of the river network, the river network is classified into three kinds of subtrees: deep branch, shallow branch and modest branch. Then, appropriate coding is assigned automatically to different subtrees to achieve river selection. Finally, actual topographic map data of a river system in a region of Hubei Province are used to comparatively validate the hybrid coding system against two existing isolated coding systems. The experimental results demonstrate that the hybrid coding method is very effective for river network selection, not only in highlighting hierarchies formed by catchment relationships but also in the uniform distribution of tributaries.

 Artículos similares

       
 
Ancilon Leuch Alencar, Marcelo Dornbusch Lopes, Anita Maria da Rocha Fernandes, Julio Cesar Santos dos Anjos, Juan Francisco De Paz Santana and Valderi Reis Quietinho Leithardt    
In the current era of social media, the proliferation of images sourced from unreliable origins underscores the pressing need for robust methods to detect forged content, particularly amidst the rapid evolution of image manipulation technologies. Existin... ver más
Revista: Future Internet

 
Yuting Bai, Yijie Niu, Zhiyao Zhao, Xuebo Jin and Xiaoyi Wang    
The phenomenon of algal bloom seriously affects the function of the aquatic ecosystems, damages the landscape of urban river and lakes, and threatens the safety of water use. The introduction of a multi-attribute decision-making method avoids the shortco... ver más
Revista: Water

 
Yanbin Li, Yubo Li, Kai Feng, Ke Sun and Zhichao Cheng    
Setting the staged flood limit water level (FLWL) through flood season staging is an important means of fully utilizing reservoir flood resources. The widely-used Fisher optimal partition method requires a certain time domain as the basic unit in determi... ver más
Revista: Water

 
Zijia Zheng, Yizhu Jiang, Qiutong Zhang, Yanling Zhong and Lizheng Wang    
The timely monitoring of urban water bodies using unmanned aerial vehicle (UAV)-mounted remote sensing technology is crucial for urban water resource protection and management. Addressing the limitations of the use of satellite data in inferring the wate... ver más
Revista: Water

 
Wei Wang, Huanhuan Feng, Yanzong Li, Quanwei You and Xu Zhou    
At present, the determination of tunnel parameters mainly rely on engineering experience and human judgment, which leads to the subjective decision of parameters and an increased construction risk. Machine learning algorithms could provide an objective t... ver más
Revista: Buildings