Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 1 (2022)  /  Artículo
ARTÍCULO
TITULO

Optimal CNN?Hopfield Network for Pattern Recognition Based on a Genetic Algorithm

Fekhr Eddine Keddous and Amir Nakib    

Resumen

Convolutional neural networks (CNNs) have powerful representation learning capabilities by automatically learning and extracting features directly from inputs. In classification applications, CNN models are typically composed of: convolutional layers, pooling layers, and fully connected (FC) layer(s). In a chain-based deep neural network, the FC layers contain most of the parameters of the network, which affects memory occupancy and computational complexity. For many real-world problems, speeding up inference time is an important matter because of the hardware design implications. To deal with this problem, we propose the replacement of the FC layers with a Hopfield neural network (HNN). The proposed architecture combines both a CNN and an HNN: A pretrained CNN model is used for feature extraction, followed by an HNN, which is considered as an associative memory that saves all features created by the CNN. Then, to deal with the limitation of the storage capacity of the HNN, the proposed work uses multiple HNNs. To optimize this step, the knapsack problem formulation is proposed, and a genetic algorithm (GA) is used solve it. According to the results obtained on the Noisy MNIST Dataset, our work outperformed the state-of-the-art algorithms.

 Artículos similares

       
 
Jing Liu and Yong Zhong    
As a structural indicator of dense subgraphs, k-core has been widely used in community search due to its concise and efficient calculation. Many community search algorithms have been expanded on the basis of k-core. However, relevant algorithms often set... ver más
Revista: Applied Sciences

 
Yuzhu Zhang and Hao Xu    
This study investigates the problem of decentralized dynamic resource allocation optimization for ad-hoc network communication with the support of reconfigurable intelligent surfaces (RIS), leveraging a reinforcement learning framework. In the present co... ver más
Revista: Algorithms

 
Lígia Conceição, Gonçalo Homem de Almeida Correia, Bart van Arem and José Pedro Tavares    
Once trusted, automated vehicles (AVs) will gradually appear in urban areas. Such a transition is an opportunity in transport planning to control undesired impacts and possibly mitigate congestion at a time when both conventional vehicles (CVs) and AVs c... ver más
Revista: Infrastructures

 
Kai Sun, Ziyin Wu, Mingwei Wang, Jihong Shang, Zhihao Liu, Dineng Zhao and Xiaowen Luo    
Polymetallic nodules are spherical or ellipsoidal mineral aggregates formed naturally in deep-sea environments. They contain a variety of metallic elements and are important solid mineral resources on the seabed. How best to quickly and accurately identi... ver más

 
Sepideh Hassani, Chih-Hung Chen and Natalia K. Nikolova    
This paper addresses the design of ultra-wideband (UWB) impedance matching networks operating in the unlicensed 3.1?10.6 GHz frequency band for low-power applications. It improves the simplified real frequency technique (SRFT) by adding a realizability c... ver más