Redirigiendo al acceso original de articulo en 18 segundos...
ARTÍCULO
TITULO

A Novel Algorithm for Multi-Criteria Ontology Merging through Iterative Update of RDF Graph

Mohammed Suleiman Mohammed Rudwan and Jean Vincent Fonou-Dombeu    

Resumen

Ontology merging is an important task in ontology engineering to date. However, despite the efforts devoted to ontology merging, the incorporation of relevant features of ontologies such as axioms, individuals and annotations in the output ontologies remains challenging. Consequently, existing ontology-merging solutions produce new ontologies that do not include all the relevant semantic features from the candidate ontologies. To address these limitations, this paper proposes a novel algorithm for multi-criteria ontology merging that automatically builds a new ontology from candidate ontologies by iteratively updating an RDF graph in the memory. The proposed algorithm leverages state-of-the-art Natural Language Processing tools as well as a Machine Learning-based framework to assess the similarities and merge various criteria into the resulting output ontology. The key contribution of the proposed algorithm lies in its ability to merge relevant features from the candidate ontologies to build a more accurate, integrated and cohesive output ontology. The proposed algorithm is tested with five ontologies of different computing domains and evaluated in terms of its asymptotic behavior, quality and computational performance. The experimental results indicate that the proposed algorithm produces output ontologies that meet the integrity, accuracy and cohesion quality criteria better than related studies. This performance demonstrates the effectiveness and superior capabilities of the proposed algorithm. Furthermore, the proposed algorithm enables iterative in-memory update and building of the RDF graph of the resulting output ontology, which enhances the processing speed and improves the computational efficiency, making it an ideal solution for big data applications.

 Artículos similares

       
 
Jafar Jafari-Asl, Seyed Arman Hashemi Monfared and Soroush Abolfathi    
This study investigates the optimal and safe operation of pumping stations in water distribution systems (WDSs) with the aim of reducing the environmental footprint of water conveyance processes. We introduced the nonlinear chaotic honey badger algorithm... ver más
Revista: Water

 
Ulrich A. Ngamalieu-Nengoue, Pedro L. Iglesias-Rey, F. Javier Martínez-Solano and Daniel Mora-Meliá    
Extreme rainfall events cause immense damage in cities where drainage networks are nonexistent or deficient and thus unable to transport rainwater. Infrastructure adaptations can reduce flooding and help the population avoid the associated negative conse... ver más
Revista: Water

 
Yong Liu, Xiaohui Yan, Wenying Du, Tianqi Zhang, Xiaopeng Bai and Ruichuan Nan    
The current work proposes a novel super-resolution convolutional transposed network (SRCTN) deep learning architecture for downscaling daily climatic variables. The algorithm was established based on a super-resolution convolutional neural network with t... ver más
Revista: Water

 
Khalid Alnajim and Ahmed A. Abokifa    
In the wake of the terrorist attacks of 11 September 2001, extensive research efforts have been dedicated to the development of computational algorithms for identifying contamination sources in water distribution systems (WDSs). Previous studies have ext... ver más
Revista: Water

 
Mohamed A. Damos, Jun Zhu, Weilian Li, Elhadi Khalifa, Abubakr Hassan, Rashad Elhabob, Alaa Hm and Esra Ei    
Social media platforms play a vital role in determining valuable tourist objectives, which greatly aids in optimizing tourist path planning. As data classification and analysis methods have advanced, machine learning (ML) algorithms such as the k-means a... ver más