Resumen
Interoperability is a challenge for the realisation of smart grids. In this work, we apply the methodology for interoperability testing and the design of experiments developed at the Smart Grids Interoperability Laboratory of the Joint Research Centre of the European Commission on a simple use case. The methodology is based on the Smart Grid Architecture Model (SGAM) of CEN/CENELEC/ETSI and includes the concept of Basic Application Profiles (BAP) and Basic Application Interoperability Profiles (BAIOP). The relevant elements of the methodology are the design of experiments and the sensitivity/uncertainty analysis, which can reveal the limits of a system under test and give valuable feedback about the critical conditions which do not guarantee interoperability. The design and analysis of experiments employed in the Joint Research Centre (JRC) methodology supply information about the crucial parameters that either lead to an acceptable system performance or to a failure of interoperability. The use case on which the methodology is applied describes the interaction between a data concentrator and one or more smart meters. Experimental results are presented that show the applicability of the methodology and the design of experiments in practice. The system is tested under different conditions by varying two parameters: the rate at which meter data are requested by the data concentrator and the number of smart meters connected to the data concentrator. With this use case example the JRC methodology is illustrated at work, and its effectiveness for testing interoperability of a system under stress conditions is highlighted.