Resumen
Meat and meat products are important sources of valuable proteins and other nutrients, but they are also a conducive environment for microorganisms? growth and can easily corrupt. In order to ensure the safety and quality of these products throughout its entire shelf-life, reliable microbial contamination assessment techniques must be used. Despite their effectiveness, traditional diagnostics methods are expensive and time consuming. Therefore, new timesaving, reliable techniques are searched for. Infrared thermography could be a good alternative method in this area. As a quick technique to detect microorganisms, it can overcome the limitations of traditional microbiological food-quality assessment methods. It has numerous advantages, such as the possibility of taking immediate temperature measurements and short processing times for obtaining a thermal image, non-contact and non-destructive measurements, and, unlike other methods, real-time measurement monitoring. Real-time monitoring is particularly important for modern production systems. The purpose of this research study is to develop a methodology for microbiological quality control of mortadella inoculated with Bacillus subtilis ATCC 6633 bacteria using a thermal imaging camera with an uncooled microbolometric detector. It was found that the thermal imaging measurements used in this research study enabled the distinction of contaminated samples (min. 106 CFU/g) from sterile samples. The tests should only record the temperature of the samples during the first 25 s after previously performing activations at -18 °C ± 1 °C for 60 s. This is where differences between the samples are most pronounced. Estimating the trend line of the sample?s cooling process is advisable.