Resumen
Revealing the interlayer pressure distribution in multilayer insulation (MLI) for cryogen (e.g., liquid hydrogen) containers is very important to improve the insulation-performance-predicting quality. This paper proposed an inversion method to reconstruct the interlayer pressure of multilayer insulations on the basis of experimentally measuring the reflectors? temperatures. The layer-by-layer (LBL) model was modified by considering the interlayer pressure distribution in MLIs to calculate the reflectors? temperatures. Groups of pre-given interlayer pressure distributions and the corresponding temperature distributions calculated by the LBL model were used to train an extreme learning machine (ELM) algorithm. Finally, the interlayer pressure distribution of the MLI was reconstructed by the trained ELM algorithm based on the measured reflectors? temperatures. The method was validated by four additional testing cases. The results showed that the proposed algorithm was accurate in reconstructing the interlayer pressures. Published experimentally measured temperature distributions of a 60-layer MLI were used as input data. The abovementioned inversion method was adopted, and a reasonable interlayer pressure distribution was obtained. Moreover, the thermal insulation performance of the MLI was calculated by the LBL model considering the reconstructed interlayer pressure distribution. We found that the predicted heat flux of the MLI deviated from the experimental results by only 2.77%, while the error of the classical LBL model ignoring the non-ideal vacuum condition was as high as 89%. Meanwhile, the predicted corresponding temperature distribution deviated from the tested value by less than 1.13 K. The proposed method can be applied to assess the interlayer pressure distribution of industrial cryogen containers and precisely predict the thermal insulation performance of a practical multilayer insulation structure.